The GuideView System for Interactive, Structured, Multi-modal Delivery of Clinical Guidelines

M. Sriram Iyengar*, Jose Florez-Arangoa*, MD, Carlos Andres Garcia*, MD
*School of Health Information Sciences, Univ of Texas, Houston, bMedical Informatics and Health Care Systems, NASA Johnson Space Center

Clinical Guidelines

Clinical Guidelines are stepwise instructions for performing diagnostic or therapeutic medical procedures. Typically, guidelines are available as text, designed for use by healthcare professionals.

Example: Disorders of the Elbow*

- When the Doctor is Really Far Away!
 - During space exploration, a physician may not be available if an astronaut needs medical care.
 - All astronauts cannot be physicians, or the physician may need medical care.
 - Autonomic physicians may be unfamiliar with a particular medical procedure.
 - Many other settings also have low physician density.
 - Rural areas, less developed countries, first responders, and battlefield situations.

Clinical guidelines can be a solution if implemented using technology and user interfaces appropriate to user’s medical training.

GuideView is a solution. It delivers clinical guidelines in an easy-to-understand and easy-to-use package.

Main Features of GuideView

- Complex guidelines are broken into simple steps in a process flow.
- Instructions for each step are presented in multiple modes.
 - Text
 - Voice and sound
 - Pictures
 - Full-motion video
 - Live action (with annotations)
 - Animation
 - GuideView interacts with the user in two modes.
 - Mouse clicks
 - Voice navigation: both hands can be free to assist the patient.
- GuideView interacts with medical sensors using Bluetooth (wireless) or wired connections.
- Automatically translates guideline pathways depending on data values received.
- Saves time and improves accuracy.
- GuideView is a multi-platform with consistent look-and-feel.
- Over the web on Windows and Macintosh clients running Internet Explorer.
- Stand-alone on Windows computers.
- On Windows Mobile PDAs (Pocket PCs).

GuideView User Interface

GuideView Design Goals

- Reduce Complexity
 - Each process step is a simple task that can be completed even by those with minimal medical training.
 - Decrease Cognitive Load
 - At each step only a small (5 maximum) choices to a next step.
- Support backtracking
 - No back is final. Can always return easily to a previous step and follow different path.
- Enable repetition
 - Provides instructions for any step as often as desired.
- Support modularity and re-usability of guidelines:
 - Guidelines can be developed in small modules.
 - Modules can be changed and nested as needed to create complex protocols.
- Reinforce learning by providing multiple instructional modes.
 - Each step is presented using multiple modes, text, voice, and visual aids.
- Look and feel as simple as possible over multiple platforms.
 - Achieve by using Flash technology from Macromedia.
- Support mobility
 - GuideView may need to be used by mobile professionals, either within a space habitat or on land.
- Separation of content and presentation.
- Content stored as XML.

GuideView supports mobility

- User interface identical to the desktop version.
- Full-motion video and voice output available.
- Multi-step and factor very desirable for mobile professionals and astronauts.
- Voice navigation is being developed.

GuideView Author

- Used to develop clinical guidelines and save them in a form capable of being played back using GuideView.
- Up to 5 branch points at each node.
- Path and zoom functions for navigating access complex, lengthy protocols.
- Supports insertion of text, voice, pictures and video.
- Content saved as XML.
- Can create GuideView-compatible protocols over the web.
- A graphical editor for creating, editing, and updating GuideView process flows.

GuideView Procedures

- So far two GuideView procedures have been developed:
 - Ophthalmic: Evaluation of redeye includes diagnosis and treatment of eye irritation.
 - Instructions for performing eye exam.
 - Diagnosis and treatment of foreign body in eye.
 - Airway triage. Diagnosis and treatment of acute breathing problems.
 - Heimlich maneuver.
 - Insertion of ILMA (Intubating Laryngeal Mask Airway).
 - Assisted breathing using Ambu bag.
 - Others.

Results of Usability Study

- Voice instructions rated useful to indispensable by 100% of subjects.
- Task Load Index significantly lower (p < 0.002) with voice navigation than without.
- Reason: Microphone and recognition software were oversensitive and interpreted external noises as commands.

Future Work

- Interface GuideView with electronic health record systems.
- Improve voice navigation.
- Add voice navigation to Windows Mobile version.
- Add an expert mode for use by physicians.
- Develop extensive module library with management and research features.
- Enable connectivity with medical devices and sensors.
- Explore engineering applications for GuideView technology.

References

Contact

- Dr. Sriram Iyengar, PhD
 isriram@uth.tmc.edu
- Asst Professor, School of Health Information Sciences, University of Texas Health Science Center at Houston.
- Medical Informatics and Health Care Systems, NASA Johnson Space Center, Houston, TX.

Acknowledgments

- The authors thank Kathy Johnson-Thorp, PhD; Jack W Smith, Jr, MD, PhD; John Hines, and Glenn Holt for support, advice, and encouragement.
- Very special thanks to Tyler Carmuth, WYLE Life Sciences, Houston, TX, for generating medical and multi-modal content used extensively in the redeye protocol.

...