NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Thermally Conductive Metal-Tube/Carbon-Composite JointsAn improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.
Document ID
20110020526
Acquisition Source
Johnson Space Center
Document Type
Other - NASA Tech Brief
Authors
Copeland, Robert J.
(TDA Research, Inc. CO, United States)
Date Acquired
August 25, 2013
Publication Date
September 1, 2004
Publication Information
Publication: NASA Tech Briefs, September 2004
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MSC-22907
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available