Serial turbo trellis coded modulation (SCTCM) includes an outer coder, an interleaver, a recursive inner coder and a mapping element. The outer coder receives data to be coded and produces outer coded data. The interleaver permutes the outer coded data to produce interleaved data. The recursive inner coder codes the interleaved data to produce inner coded data. The mapping element maps the inner coded data to a symbol. The recursive inner coder has a structure which facilitates iterative decoding of the symbols at a decoder system. The recursive inner coder and the mapping element are selected to maximize the effective free Euclidean distance of a trellis coded modulator formed from the recursive inner coder and the mapping element. The decoder system includes a demodulation unit, an inner SISO (soft-input soft-output) decoder, a deinterleaver, an outer SISO decoder, and an interleaver.
U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

Benedetto S.; Divsalar D.; Garello R.; Montorsi G.; Pollara F.; Bit geometrically uniform encoders: a systematic approach to the design of serially concatenated TCM, Proceedings Information Theory Workshop 1998.*

jsessionid=D1713E7616BCCD69D1374E06C6DF947?sequence=1.

* cited by examiner
FIG. 1

FIG. 2
FIG. 3

FIG. 4

FIG. 5
FIG. 9

FIG. 10
FIG. 11

In some situations it may be desirable to have a very low bit error rate, e.g. less than 10⁻⁸.

SUMMARY

The present application combines a combination of trellis coded modulation with turbo codes, to obtain certain advantages of bandwidth and power efficiency from the trellis coded modulation, while also obtaining other advantages of the turbo codes. A specific embodiment combines serially concatenated coding for the inner coder with trellis codes on the outer coder.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of the invention will be described in detail with reference to the accompanying drawings, wherein:

FIG. 1 shows a block diagram of a prior art turbo coder;

FIG. 2 shows a block diagram of inner coder for serially concatenated trellis coded modulation using a generic mapper;

FIG. 3 shows a block diagram of an inner coder using two-dimensional M point mapping;

FIG. 4 shows a coder using a mapping system that provides trellis coded modulation for QAM;

FIG. 5 shows a trellis coded modulator which has an inner coder formed of a two state device;

FIG. 6 shows a trellis coder with a four state trellis coded modulator;

FIG. 7 shows an outer coder for use in the FIGS. 5 and 6 embodiments;

FIG. 8 shows an alternative embodiment using bit puncturing;

FIG. 9 shows a block diagram of an iterative decoder;

FIG. 10 shows a trellis diagram for the decoder; and

FIG. 11 shows a turbo coder with lower complexity.
of an outer convolutional code or a short block code with an inner trellis coded modulation code is called a serially concatenated TCM code. This system enables a relatively very low bit error rate.

FIG. 2 shows the basic structure of the serially concatenated trellis coded modulation scheme. The outer coder, which is a serial concatenated coder 200, receives input data 202 having 2b bits, and produces output data 204 having 2b+1 bits. Hence, the outer coder 200 has a rate 2b/(2b+1). More generally, however, the coder should have a rate somewhat less than one. A short block code can alternatively be used as long as it has maximum free Hamming distance as the outer code.

An interleaver 210 permutes the output of the outer coder 200. This produces interleaved data 212. The interleaved data 212 enters an inner coding block 220 which is a recursive, convolutional inner coder having rate (2b+1)/(2b+2). Mapper 230 then maps the 2b+2 output bits of the inner coder 220 to two symbols. Each symbol belongs to a 2^2b level modulation or four dimensional modulation. This system uses 2b information bits for each two modulation symbol intervals, thereby resulting in a b bit/second/Hz transmission when ideal Nyquist pulse shaping is used. In other words, this provides b bits per modulation symbol. The inner code and the mapping are jointly optimized based on maximum effective free Euclidean distance of the inner trellis coded modulation, as described above.

There are many different ways of configuring two-dimensional and multidimensional trellis coded modulators. Conventional trellis coded modulation designs may have drawbacks when used in this situation. Therefore, while the present application contemplates using conventional trellis coded modulators, it is noted that there are reasons why such conventional modulators may be less useful.

In a serial trellis coded modulator, the Euclidean distance of encoded sequences can be very large for input sequences having a Hamming distance equal to one. This may not be satisfied even if the encoder structure has feedback. Some of the input bits may remain uncoded in a conventional trellis coded modulator. These uncoded bits may select a point from among a set that has been chosen according to the encoded bits. The combination of coded and uncoded bits is then mapped to either two or higher dimensional modulation.

It has been considered by the present inventors to use conventional trellis coded modulation without parallel branches. This, however, may require that the number of states be greater than the number of transition per states. This in turn may prevent the use of simple codes with a small number of states.

Conventional trellis coded modulators also assign the input labels effectively arbitrarily. It has been thought by many that the assignment of input labels did not play an important role in coding. According to the present specified coding system, input labels are carefully selected.

Another aspect is the complexity of the code selection. The serially concatenated trellis coded modulation described with reference to FIG. 2 has a number of transitions per state of 2^2b+1. For specific case of interest, b may equal 3. Therefore, even if the number of states is low, the number of transitions may be high. For two states, there may be 128 transitions per state, resulting in 256 edges in the trellis section. The complexity of the decoder may depend on the number of edges per trellis section. This complexity as described above may actually interfere with high-speed operation, since the complexity of operation takes time to complete.

Another serial concatenated trellis coded modulation scheme is shown in FIG. 3. This system uses a two-dimen-

sional constellation with M points. For purposes of explanation, we can define m=log 2M, where M is the number of phases. In this structure, the input data 300 is coupled to an outer coder 310 producing b+1 bits for the b input bits. Hence, the outer coder is a rate b/(b+1) binary convolutional coder. An interleaver 320 permutes the output of the outer coder. The interleaved data enters a rate m/m=1 recursive convolutional inner coder. The m output bits are then mapped to one symbol along into a 2^m level modulation by a mapping element 340. This system uses b information bits per b+1/m modulation symbol interval. It effectively results in bmb/b+1 bits per modulation symbol.

The inner coder 330 and mapping 340 are jointly optimized based on maximization of the effective free Euclidean distance of the inner trellis coded modulator.

For example consider 8 PSK modulation, where m=3. Then, the throughput r=3b/(b+1) is as follows: for b=2, r=2; for b=3, r=2.25; and for b=4, r=2.4. Accordingly, a ½ convolutional code with puncturing can be used to obtain various throughput values, without changing the inner coder modulation.

A ½ convolutional code with puncturing can be used to obtain various throughput values, without changing the inner coder modulation.

For rectangular M²-QAM, where m=log₂ M, the structure may become even simpler. In this case, to achieve throughput of 2 mb/(b+1) bps/Hz a rate b/(b+1) outer coder and a rate m/m inner coder may be used, where the output bits are alternatively assigned to in-phase and quadrature components of the M²-QAM modulation.

The structure of the SCTCM encoder is shown in FIG. 4. An outer coder 400 is connected to an interleaver 410, which drives a trellis code modulator inner coder 420.

For example consider 16-QAM modulation, where m=2, then the throughput r=4b/(b+1) is: for b=1, r=2; for b=2, r=2.67; and for b=4, r=3.2.

For this embodiment, b=3. This causes the number of transitions per state of the inner trellis coder 420 to be reduced to 4. This results in a large reduction in complexity: 32 times lower than the previous case. Moreover, the outer coder also has a lower code rate; this code rate may be reduced from ½ to ¼.

Other embodiments of this basic idea are also possible by changing the mapping. In the FIGS. 5 and 6 embodiments, the output of the inner coder is mapped to the I and Q components of 16QAM alternatively. The encoder structure of a SCTCM for 2-state inner TCM is shown in FIG. 5, which shows the rate ¾ four state coder 500 operating as the outer coder. An interleaver 510 drives the inner coder 520.

The encoder structure of the SCTCM for 4-state inner TCM is shown in FIG. 6. The inner coder 620 includes two delay elements as shown. The outer coder 500 has an optimum rate ¾, 4-state nonrecursive convolutional code with free Hamming distance of 3.

The detailed structure of the outer encoder 500 is shown in FIG. 7. This rate ¾, 4-state outer code has 32 edges per trellis section and produces 4 output bits. Thus the complexity per output bit is 32/4=8. The complexity per input bit is 32/3.

The complexity of the outer coder may be further reduced using a rate of ½, 4-state systematic recursive convolutional code. This code can be punctured to rate ¾, by puncturing only the parity bits. The minimum distance of this punctured code is 3, the same as for the optimum code. Now the code has 8 edges per trellis section and produces 2 output bits. Thus the complexity per output bit is 8/2=4. Since this code is systematic there is no complexity associated with the input. The encoder structure for this low complexity SCTCM is shown in FIG. 8.
Using this low complexity scheme with 5 iterations is roughly equal to the complexity of a standard Viterbi decoder. However, this obtains a 2 db advantage over the “Pragmatic” TCM system.

Because it can be shown that a dominant term in the performance bound on bit error probability of serially concatenated TCM, employing an outer code with free (or minimum) Hamming distance \(d^0\), averaged over all possible interleavers of \(N\) bits, is proportional for large \(N\) to roughly equal to the complexity of a standard Viterbi decoder.

The interleaving gain at low signal to noise ratios may depend on the largest minimum Euclidean distance \(d\), averaged overall possible interleavers of \(N\) bits, is proportional for large \(N\) to

\[N \cdot \left(\frac{d^{(3)}}{d^0} \right)^2 \cdot 2^{N-40} \]

where \(|x|\) represents the integer part of \(x\), and

\[d^0 = \frac{d^0 - 9}{2}, \text{ for } d^0 \text{ even, and} \]

\[d^0 = \frac{(d^0 - 9) - 3d^2}{2} + (d^2)^2, \text{ for } d^0 \text{ odd} \]

The parameter \(d^{(3)}\) is the effective free Euclidean distance of the inner code, \(h^{(3)}\) the minimum Euclidean distance of inner code sequences generated by input sequences with Hamming distance \(3\), and \(E_b/N_0\) the M-ary symbol signal-to-noise-ratio.

The above results are valid for very large \(N\). For large values of the signal-to-noise ratio \(E_b/N_0\), the performance of SCTCM is dominated by avoiding sequences with Hamming distance \(3\), and \(E_b/N_0\) is the M-ary symbol signal-to-noise-ratio.

The parameter \(d^{(3)}\) is the effective free Euclidean distance of the inner code, \(h^{(3)}\) the minimum Euclidean distance of inner code sequences generated by input sequences with Hamming distance \(3\), and \(E_b/N_0\) the M-ary symbol signal-to-noise-ratio.

The above results are valid for very large \(N\). For large values of the signal-to-noise ratio \(E_b/N_0\), the performance of SCTCM is dominated by

where \(h_m\) is the minimum Euclidean distance of the SCTCM scheme, and \(L_2 \equiv \sum \leq d^2\).

Based on these results, the design criterion for serially concatenated TCM for larger interleavers and very low bit error rates is to maximize the free Hamming distance of the outer code (to achieve interleaving gain), and to maximize the effective free Euclidean distance for the inner TCM code.

Let \(l\) be the binary input sequence to the inner TCM code, and \(x(z)\) be the corresponding inner TCM encoder output with \(M\)-ary symbols. The present application defines criteria for selecting the constituent inner TCM encoder:

1. The constituent inner TCM encoder may be configured for a given two or multidimensional modulation such that the minimum Euclidean distance \(d(x(z), x(z'))\) over all \(z, z'\) pairs, \(z \neq z'\), is maximized given that the Hamming distance \(d_H(z, z')=3\). This value is the minimum Euclidean distance of the inner TCM code due to input Hamming distance 3, denoted by \(h_m^{(3)}\).

2. Among the candidate encoders, select the one that has the largest minimum Euclidean distance in encoded sequences produced by input sequences with Hamming distance \(d^0\). This minimum Euclidean distance of the SCTCM is called \(h_m\).

It has been found by the inventors that those sequences with Hamming distances of 2 or 3 at the input of the TCM encoder are still important, even if the free Hamming distance \(d^0\) of the outer code is larger than 2 or even 3. This is because the interleaving gain at low signal to noise ratios may depend on the number of error events that a pair of input sequences generate in the trellis of the inner code. For a given input Hamming distance, a larger number of error events may create a smaller interleaving gain. For example, if the input Hamming distance between sequences to the inner TCM is 4, the largest number of error events that produce small output Euclidean distances is 2 (two events with an input Hamming distance of 2 each).

As described above, the present embodiments also use mapping of output labels for TCM. As soon as the input labels and output signals are assigned to the edges of a trellis, a complete description of the TCM code is obtained. The selection of the mapping (output labels) does not change the trellis code. However, it influences the encoder circuit required to implement the TCM scheme. A convenient mapping should be selected to simplify the encoder circuit and, if possible, to yield a linear circuit that can be implemented with exclusive ORs. The set partitioning of the constellation and the assignment of constellation points to trellis edges, and the successive assignments of input labels to the edges may be important. Ungerboeck proposed a mapping called “Mapping by set partitioning”, leading to the “natural mapping”. This mapping for two-dimensional modulation may be useful if one selects the TCM scheme by searching among all encoder circuits that maximize the minimum Euclidean distance. The “inner” trellis code modulator can be configured as follows:

To obtain the well known set partitioning techniques for signal sets may be used.

The input label assignment is based on the codewords of the parity check code of the overall TCM code and the set partitioning, to maximize the quantities described in the equations above. The minimum Hamming distance between input labels for parallel transitions will be equal to 2. The assignment of codewords of the inner TCM code as input labels to the two-dimensional signal points is not arbitrary.

A sufficient condition to have very large output Euclidean distances for input sequences with Hamming distance 1 is that all input labels to each state be distinct. A pair of input labels and two-dimensional signal points are assigned to the edges of a trellis diagram based on the design criteria described above.

Example 1

Set Partitioning of 8PSK and Input Labels Assignment

Let the eight phases of 8PSK be denoted by \([0, 1, 2, 3, 4, 5, 6, 7]\). Here \(m=3\). Consider the 8PSK signal set \(A \equiv \{0, 2, 4, 6\}\), and set \(B \equiv \{1, 3, 5, 7\}\). For unit radius 8PSK constellation, the minimum intra-set square Euclidean distance for each set is 2. The minimum inter-set square Euclidean distances is 0.586.

Select the set of codewords of the \((3, 2, 2)\) parity check code of \(L_2\). Consider a 2-state trellis. Assign the input-output pair \((L_1, A)\) to four edges from state 0 to state 0. Assign the input-output pair \((L_1, B)\) to four edges from state 0 to state 1. Next assign the input-output pair \((L_2, A)\) to four edges from the state 1 to state 0, and assign the output-input pair \((L_2, B)\) to four edges from state 0 to state 1. Finally \(L_3\) is generated in
the same way, as the complement of elements in L_1, i.e. $L_1’=[(110), (101), (011), (000)]$.

Such assignment guarantees that the squared effective free Euclidean distance of trellis code is 2, where the minimum squared Euclidean distance of the code is 0.586.

Having determined the code by its input labels and two-dimensional output signals, the encoder structure can then be obtained by selecting any appropriate labels (output labels) for the two-dimensional output signals. The following output mapping may be used: {000}, {001}, {010}, {011}, {110}, {111}, {100}, {101}], mapped to phases [0, 1, 2, 3, 4, 5, 6, 7], which is called “reordered mapping”. For this 2-state inner code, $d_{eff}^2=2$, and $h_{m}^{(3)}=\infty$, and $h_{m}^{(2)}=0.586$. The outer code for this example can be selected as a 4-state, rate $\frac{3}{4}$, convolutional code with $d_{eff}^2=3$ (this is a recursive systematic rate $\frac{2}{3}$ convolutional code where the parity bits are punctured). Since $h_{m}^{(3)}=\infty$ then d_{eff}^2 is increased effectively to 4. This method of design was used to obtain the encoders in the previous examples for 16QAM.

A decoder is described herein. This decoder can be a Bit-By-Bit Iterative Decoder. The iterative decoder for serially concatenated trellis coded modulation uses a generalized Log-APP (a-posteriori probability) decoder module with four ports, called SISO APP module or simply SISO. The block diagram of the iterative decoder for serial concatenated TCM is shown in FIG. 9. The device has a SISO inner decoder 900 coupled to a deinterleaver 905, an outer decoder 910. Feed-forward diagram of the iterative decoder for serial concatenated TCM is shown in FIG. 10. Consider an inner TCM code with p, input bits and q, nonbinary complex output symbols with normalized unit power, and an outer code with p_2, input bits and q_2 binary outputs {0,1}. Let $U_k(e)$ represent $u_k(e); i=1, 2, \ldots, p_2$, the input bits on a trellis edge at time k (m=1 for the inner TCM, and m=2 for the outer code), and let $c_k(e)$ represents $c_k(e); i=1, 2, \ldots, q_2$, the output symbols (m=1 for the inner TCM, with nonbinary complex symbols, and m=2 for the outer code with binary {0,1} symbols).

Define the reliability of a bit Z taking values {0,1} at time k as

$$a = \log \left(\frac{P_t}{P_0} \right) = \max_i [a_1 \ldots a_k] \Delta \max + [a_i]$$

The second argument in the brackets, shown as a dot, may represent I, the input, or O, the output, to the SISO. We use the following identity

$$\lambda_k(z) = \Delta \log \frac{P_t[Z=k]}{P_0[Z=k]}$$

where $\delta(a_1, \ldots, a_k)$ is the correction term which can be computed using a look-up table.

The “max*” operation is a maximization (compare/select) plus a correction term (lookup table). Small degradations occur if the “max*” operation is replaced by “max”. The received complex samples $y_{k,i}$ at the output of the receiver matched filter are normalized such that additive complex noise samples have unit variance per dimension.

SISO can be used for the Inner TCM.

The forward and the backward recursions are:

$$a_k^{(s)}(s) = \max_{e \in \mathcal{L}^{(s)}} \left[a_{k-1}^{(s)}(s) + \sum_{i=1}^{p_1} n_i^{(s)}(e) s_i^{(s)}(l) + k_a^{(s)} \right]$$

for all states s, and $k=1, \ldots, (n-1)$, where n represents the total number of trellis steps from the initial state to the final state. The extrinsic bit information for $U_{k,j}^{(s)}; j=1, 2, \ldots, p_1$ can be obtained from:

$$\lambda_k^{(U_{k,j}; O)} = \max_{c_k^{(e)}; e \in \mathcal{L}^{(s)}} \left[a_{k-1}^{(e)} + \sum_{i=1}^{p_2} n_i^{(s)}(e) s_i^{(s)}(l) + \beta_k^{(e)} \right]$$

where

$$\lambda_k [c_k(e); l] = \frac{y_k - \sqrt{2E_{sec}} \sigma_k(e)}{2}.\]$

We assume the initial and the final states of the inner encoder (as well as the outer encoder) are the all zero state. Forward recursions start with initial values, $a_0^{(s)}(s)=0, s=0$(initial zero state) and $a_0^{(s)}(s)=\infty$, if $s=0$. Backward recursions start with $\beta_0^{(s)}=0, s=0$(final zero state) and $\beta_0^{(s)}=\infty$, if $s=0$. The h_{mk} and h_{pk} are normalization constants which, in the hardware implementation of the SISO, are used to prevent buffer overflow. These operations are similar to the Viterbi algorithm used in the forward and backward directions, except for a correction term that is added when compare-select operations are performed. At the first iteration, all $\lambda_k [U_{k,j}; I]$ are zero. After the first iteration, the inner SISO accepts the extrinsics from the outer SISO, through the interlayer a_i as reliabilities of input bits of TCM encoder, and the external observations from the channel. The inner SISO uses the input reliabilities and observations for the calculation of new extrinsics $\lambda_k [U_{k,j}; O]$ for the input bits. These are then provided to the outer
SISO module, through the deinterleaver \(\pi^{-1} \). The forward and the backward recursions for SISO are:

\[
\begin{align*}
\alpha_k(s) &= \max_{c_k \in C_k} \left\{ a_{k-1}[s'(c)] + \sum_{i=1}^{q_2} c_{k,i}(e)\lambda_i[C_{k,i}; I] + h_{k,i} \right\} + b_{k,i} \\
\beta_k(s) &= \max_{c_k \in C_k} \left\{ \beta_{k+1}[s'(c)] + \sum_{i=1}^{q_2} c_{k+1,i}(e)\lambda_i[C_{k+1,i}; I] + h_{k+1,i} \right\} + b_{k+1,i}
\end{align*}
\]

The extrinsic information for \(C_{k,j}; j = 1, 2, \ldots, q_2 \), can be obtained from:

\[
\begin{align*}
\lambda_k(U_{k,j}; O) &= \max_{c_k \in C_k} \left\{ a_{k-1}[s'(c)] + \sum_{i=1}^{q_2} c_{k,i}(e)\lambda_i[C_{k,i}; I] + \beta_k[s'(c)] \right\} = \\
&= a_{k-1}[s'(c)] + \sum_{i=1}^{q_2} c_{k,i}(e)\lambda_i[C_{k,i}; I] + \beta_k[s'(c)] \\
&= \max_{c_k \in C_k} \left\{ a_{k-1}[s'(c)] + \sum_{i=1}^{q_2} c_{k,i}(e)\lambda_i[C_{k,i}; I] + \beta_k[s'(c)] \right\}
\end{align*}
\]

with initial values, \(\alpha_k(s) = 0 \), if \(s = 0 \) and \(\alpha_k(s) \rightarrow \infty \), if \(s \neq 0 \) and \(\beta_k(s) = 0 \), if \(s = 0 \) and \(\beta_k(s) \rightarrow \infty \), if \(s \neq 0 \), where \(h_{k,i} \) and \(h_{k+1,i} \) are normalization constants which, in the hardware implementation of the SISO, are used to prevent the buffer overflow.

The final decision is obtained from the bit reliability computation of \(U_{k,j}; j = 1, 2, \ldots, q_2 \), passing through a hard limiter, as

\[
\begin{align*}
\lambda_k(U_{k,j}; O) &= \max_{c_k \in C_k} \left\{ a_{k-1}[s'(c)] + \sum_{i=1}^{q_2} c_{k,i}(e)\lambda_i[C_{k,i}; I] + \beta_k[s'(c)] \right\} = \\
&= a_{k-1}[s'(c)] + \sum_{i=1}^{q_2} c_{k,i}(e)\lambda_i[C_{k,i}; I] + \beta_k[s'(c)] \\
&= \max_{c_k \in C_k} \left\{ a_{k-1}[s'(c)] + \sum_{i=1}^{q_2} c_{k,i}(e)\lambda_i[C_{k,i}; I] + \beta_k[s'(c)] \right\}
\end{align*}
\]

The outer SISO accepts the extrinsics from the inner SISO as input reliabilities of coded bits of the outer encoder. For the inner SISO there is no external observation from the channel. The outer SISO uses the input reliabilities for calculation of new extrinsics \(\lambda_k(U_{k,j}; O) \) for coded bits. These are then provided to the inner SISO module.

The structure of iterative decoder for punctured outer code is shown in FIG. 11.

Other embodiments are within the disclosed invention.

The invention claimed is:

1. A method, comprising:

 receiving a set of input information, wherein the set of input information corresponds to a stream of symbols transmitted by an encoder system configured to perform a trellis coded modulation (TCM), wherein the TCM includes an inner encoding and a mapping, wherein the inner encoding encodes a first set of data to generate an intermediate set of data according to a rate 1 recursive code, wherein the mapping generates the stream of symbols from the intermediate set of data according to a first map, wherein the rate 1 recursive code and the first map maximize the effective free Euclidean distance of the inner encoding;

 performing a first SISO decoding operation on the set of input information to generate a first set of decoded information, wherein the first SISO decoding operation is for reversing the effects of the TCM encoding of the encoder system;

 generating a deinterleaved version of the first set of decoded information; and

 performing a second SISO decoding operation on the deinterleaved version of the first set of decoded information to generate a set of output information.

2. The method of claim 1, further comprising:

 generating, from the set of output information, an estimate of original data bits in the first set of data.

3. The method of claim 2, wherein performing the second SISO decoding operation also generates a first set of feedback information;

 wherein the method further comprises:

 interleaving the first set of feedback information to generate a second set of feedback information;

 repeating the first and second SISO decoding operations, wherein the repeated first SISO decoding operation uses the second set of feedback information and the repeated second SISO decoding operation uses a deinterleaved version of decoded information generated by the repeated first SISO decoding operation.

4. The method of claim 1, wherein the symbols of said stream are symbols of a quadrature amplitude modulation (QAM) constellation having \(2^m \) points, wherein \(m \) is greater than one.

5. The method of claim 1, wherein the symbols of said stream correspond to a phase shift keying (PSK) modulation having a constellation with \(2^m \) points, wherein \(m \) is greater than one.

6. The method of claim 1, wherein the encoder system is configured to perform an outer encoding in addition to said TCM, wherein the outer encoding encodes original data bits to produce outer coded data, wherein the first set of data is an interleaved version of the outer coded data, wherein the second SISO decoding operation is based on the outer encoding.

7. The method of claim 6, wherein the outer encoding has rate \(b/(b+1) \), wherein \(b \) is an integer greater than or equal to one.

8. An apparatus, comprising:

 a first SISO decoding unit configured to receive, at an input, input information and generate intermediate decode information therefrom, wherein the input information corresponds to a stream of symbols transmitted by an encoder system configured to perform a trellis coded modulation (TCM), wherein the TCM includes an inner encoding and a mapping, wherein the inner encoding encodes a first set of data to generate an intermediate set of data according to a rate 1 recursive code, wherein the mapping generates the stream of symbols from the intermediate set of data according to a first map, wherein the rate 1 recursive code and the first map maximize the effective free Euclidean distance of the inner encoding, wherein the inner SISO decoding unit is configured according to the TCM of the encoder system, and wherein the inner SISO decoding unit is configured to reverse the effects of the TCM encoding; a deinterleaver unit configured to generate a deinterleaved version of the intermediate decode information; and
an outer SISO decoding unit configured to generate output information from the deinterleaved version of the intermediate decode information.

9. The apparatus of claim 8, wherein the apparatus is configured to generate, from the output information, an estimate of original data bits in the first set of data.

10. The apparatus of claim 9, wherein the outer SISO decoding unit is configured to generate feedback information, wherein the apparatus further comprises an interleaver unit configured to generate an interleaved version of the feedback information.

11. The apparatus of claim 10, wherein the inner SISO decoding unit and the outer SISO decoding unit are configured to generate the estimate by performing iterative decoding operations.

12. The apparatus of claim 11, wherein the inner SISO decoding unit is configured to generate subsequent sets of intermediate decode information from input information and interleaved versions of the feedback information.

13. The apparatus of claim 8, wherein the symbols of said stream are symbols of a quadrature amplitude modulation (QAM) constellation having 2^{2m} points, wherein m is greater than one.

14. The apparatus of claim 8, wherein the symbols of said stream correspond to a phase shift keying (PSK) modulation having a constellation with 2^m points, wherein m is greater than one.

15. The apparatus of claim 8, wherein the encoder system is configured to perform an outer encoding in addition to said TCM, wherein the outer encoding encodes original data bits to produce outer coded data, wherein the first set of data is an interleaved version of the outer coded data, wherein a SISO decoding operation performed by the outer SISO decoder unit is based on the outer encoding.

16. The apparatus of claim 15, wherein the outer encoding has rate $b/(b+1)$, wherein b is an integer greater than or equal to one.

17. A decoding apparatus, comprising:
 a first soft-input soft-output (SISO) module configured to receive input information corresponding to symbols transmitted by an encoding apparatus, wherein the encoding apparatus is configured to perform an outer encoding on source data in order to generate first intermediate source data, and to perform an inner trellis coded modulation (TCM) on an interleaved version of the first intermediate source data to generate the transmitted symbols, wherein the first SISO module is configured to compute intermediate decode information from the input information based on an inner trellis used by said inner TCM of the encoder system, and wherein the first SISO module is configured to reverse the effects of the TCM encoding; and
 a second SISO module configured to compute output information from a deinterleaved version of the intermediate decode information based on an outer trellis used by the outer encoding of the encoding system;

 wherein the inner TCM performed by the encoder system includes an inner encoding and a mapping, wherein the inner encoding encodes the interleaved version of the first intermediate source data to generate second intermediate source data according to a rate 1 recursive code, wherein the mapping generates the output symbols from the second intermediate source data according to a first map, wherein the rate 1 recursive code and the first map maximize the effective free Euclidean distance of the inner TCM.

18. The decoding apparatus of claim 17, further comprising:
 an interleaver module; and
 a deinterleaver module configured to generate the deinterleaved version of the intermediate decode information;

 wherein the second SISO module is configured to generate feedback information from the deinterleaved version of the intermediate decode information; and

 wherein the interleaver module is configured to generate an interleaved version of the feedback information, and wherein the first SISO module is further configured to generate the intermediate decode information from the interleaved version of the feedback information.

19. The decoding apparatus of claim 18, wherein the inner trellis is a 4-state trellis.

20. The decoding apparatus of claim 18, wherein the inner trellis is a 2-state trellis.