NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Three Dimensionally Interlinked, Dense, Solid Form of Single-Walled CNT RopesA 3D networked, dense form of single-walled carbon nanotubes (SWNT) has been made through isotropic shrinking of a gel-like SWNT-water paste by very slow evaporation. Approximately 35 g of Raw HiPco nanotubes were cleaned by the method of soft baking (250 C for 15 hours in air saturated with water vapor) in a glass beaker followed by leaching with concentrated hydrochloric acid. Typically, one liter of concentrated hydrochloric acid was added to the soft-baked voluminous mass in the same large beaker, and allowed to digest at room temperature with stirring overnight. The acid-digested SWNT slurry was filtered through a large porcelain Buchner funnel under atmospheric pressure. The slurry was continuously flushed, while still in the funnel, with a very slow but steady stream of deionized water employing a peristaltic pump. This process, referred to as gwashing, h continued until the filtrate water dripping from the Buchner funnel was clear, colorless, and neutral to a pH paper. This took about 15 liters of water to flow through the slurry over a day. At this point, the water pump was stopped and the SWNT-water slurry was allowed to drain the excess water for about 10 hours. The resulting thick paste of SWNT-neutral water was transferred to a beaker. The beaker was covered with aluminum foil with few holes and allowed to dry very slowly in a hood at room temperature. In about eight weeks, the sample gradually dried isotropically to a cylindrical dense mass referred to as a carbon nanotube block (CNB). There was no carbonaceous matter sticking to any of the glass surface where the SWNT-water paste made contact. The approximate dimensions of the cylindrical SWNT block that weighed 28 g were 1.5 in. (.3.8 cm) in diameter and 1.25 in. (.3.2 cm) in height. The bottom portion of the cylinder that was in contact with the beaker surface was slightly wider, indicating some resistance to shrinking. The cylindrical mass also consisted of several pores. The cylindrical mass was very tough and could not be broken with a small hammer using considerable force. The mass of the solid could be polished over a fine grain emery paper or even a smooth, stainless steel surface indicative of alignment at finer levels.
Document ID
20120007483
Acquisition Source
Johnson Space Center
Document Type
Other - NASA Tech Brief
Authors
Smalley, Richard E.
(Rice Univ. Houston, TX, United States)
Date Acquired
August 25, 2013
Publication Date
February 1, 2012
Publication Information
Publication: NASA Tech Briefs, February 2012
Subject Category
Nonmetallic Materials
Report/Patent Number
MSC-24059-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available