NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Failure Analysis of T-38 Aircraft Burst Hydraulic Aileron Return LineDuring maintenance troubleshooting for fluctuating hydraulic pressures, a technician found that a right hand aileron return line, on the flight hydraulic side, was ruptured (Fig. 1, 2). This tubing is part of the Hydraulic Flight Control Aileron Return Reducer to Aileron Manifold and is suspected to be original to the T-38 Talon trainer aircraft. Ailerons are small hinged sections on the outboard portion of a wing used to generate rolling motion thereby banking the aircraft. The ailerons work by changing the effective shape of the airfoil of the outer portion of the wing [1]. The drawing, Northrop P/N 3-43033-55 (6/1960), specifies that the line is made from 0.375 inch OD, aluminum 5052-0 tubing with a 0.049 inch wall thickness. WW-T-787 requires the tube shall be seamless and uniform in quality and temper [2]. The test pressure for this line is 3000 psi, and the operational pressure for this line is estimated to be between 45 psi and 1500 psi based on dynamic loading during flight. Examination of the fracture surface found evidence of arrest bands originating on the inner diameter (Fig 3). Ductile dimples are observed on the tube fractures (Fig. 4). The etched cross-section revealed thinning and work-hardening in the burst region (Fig. 5). The wall thickness just outside the work-hardened fracture region measured 0.035". Barlow's Formula: P = 2St/D, where P is burst pressure, S is allowable stress, t is wall thickness and D is the outer diameter of tube. Using the ultimate tensile strength of 28 ksi and a measured wall thickness of 0.035 inches at burst, P = 5.2 ksi (burst pressure). Using the yield of 13 ksi (YS) for aluminum 5052-0, plastic deformation will happen at P = 2.4 ksi suggesting plastic deformation occurred at a proof pressure of 3.0 ksi. Conclusion: The burst resulted from high stress, low-cycle fatigue. Evidence of arrest bands originating on the inner diameter. Fracture is predominately shear dimples, characteristic of high load ductile fractures (Fig 6). Section wall reduction in the burst region. Plastic deformation and thinning of the out-of-specification tube wall likely happened during the initial proof testing years ago. Metallography of tubing away from rupture site confirmed tubing was seamless. Based on the tube microstructure, it is likely that the initial wall thickness was about 30 % thinner than the requirement of 0.049 inches. Fracture initiated on the ID and progressed to the OD (shear lip). The tube is made of the correct material of 5052-0 aluminum as verified using Optical Emission Spectroscopy (Table 2). The tubing hardness tested 77 HV100 (77 HRE). This hardness is slightly above the requirement for 70 HRE maximum for aluminum 5052-0 in AMS 2658C [3].
Document ID
20120013466
Acquisition Source
Johnson Space Center
Document Type
Presentation
Authors
Martinez, J. E.
(NASA Johnson Space Center Houston, TX, United States)
Figert, J. D.
(NASA Johnson Space Center Houston, TX, United States)
Paton, R. M.
(NASA Johnson Space Center Houston, TX, United States)
Nguyen, S. D.
(NASA Johnson Space Center Houston, TX, United States)
Flint, A.
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
August 26, 2013
Publication Date
July 30, 2012
Subject Category
Structural Mechanics
Report/Patent Number
JSC-CN-26771
Meeting Information
Meeting: Microscopy & Microanalysis 2012
Location: Phoenix, AZ
Country: United States
Start Date: July 30, 2012
End Date: August 2, 2012
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available