Revitalizing the Space Shuttle's Thermal Protection System with Reverse Engineering and 3D Vision Technology

Brad Wilson United Space Alliance LCC
Yishai Galatzer, Cognitens, Inc.
Date 7-21-2008
Revitalizing the Space Shuttle's Thermal Protection System with Reverse Engineering and 3D Vision Technology

- Abstract:
 - The Space Shuttle is protected by a Thermal Protection System (TPS) made of tens of thousands of individually shaped heat protection tile. With every flight, tiles are damaged on take-off and return to earth. After each mission, the heat tiles must be fixed or replaced depending on the level of damage. As part of the return to flight mission, the TPS requirements are more stringent, leading to a significant increase in heat tile replacements.
 - The replacement operation requires scanning tile cavities, and in some cases the actual tiles. The 3D scan data is used to reverse engineer each tile into a precise CAD model, which in turn, is exported to a CAM system for the manufacture of the heat protection tile. Scanning is performed while other activities are going on in the shuttle processing facility. Many technicians work simultaneously on the space shuttle structure, which results in structural movements and vibrations.
 - This paper will cover a portable, ultra-fast data acquisition approach used to scan surfaces in this unstable environment. The presentation will discuss the entire process used to produce a quality tile in a fraction of the time and cost of older techniques. After proven successful on the STS-114 mission, the 3D Vision scanning procedure is now used for all three shuttle processing facilities.
Revitalizing the Space Shuttle's Thermal Protection System with Reverse Engineering and 3D Vision Technology
Report Date (DD-MM-YYYY)
21-07-2008

Report Type
Technical

Dates Covered (From - To)
June 2003 - Oct 2005

Title and Subtitle
Revitalizing the Space Shuttle's Thermal Protection System with Reverse Engineering and 3D Vision Technology

Authors
- Brad Wilson (TPS Engineering, United Space Alliance)
- Yishai Galatzer (Cognitens, Inc.)

Performing Organization Name(S) and Address(es)
- Brad Wilson, TPS Engineering, United Space Alliance 8600 Astronaut Blvd, Cape Canaveral FL 32920
- Yishai Galatzer, Cognitens, Inc., 51170 Grand River Ave, Wixom, MI, 48393

Sponsor/monitoring agency name(s) and address(es)
- CMSC Society, 2519 152nd Avenue NE, Redmond, WA 98052
 Contact: Rina Molari-Korgel, 1404 Timberline Drive, Benbrook, TX 76126 817-683-2261

Distribution/Availability Statement
Copyright © 2008 by United Space Alliance, LLC. These materials are sponsored by the National Aeronautics and Space Administration under Contract NNJ06VA01C.

Abstract
The Space Shuttle is protected by a Thermal Protection System (TPS) made of tens of thousands of individually shaped heat protection tiles. With every flight, tiles are damaged on take-off and return to earth. After each mission, the heat tiles must be fixed or replaced depending on the level of damage. As part of the return to flight mission, the TPS requirements are more stringent, leading to a significant increase in heat tile replacements.

The replacement operation requires scanning tile cavities, and in some cases the actual tiles. The 3D scan data is used to reverse engineer each tile into a precise CAD model, which in turn, is exported to a CAM system for the manufacture of the heat protection tile. Scanning is performed while other activities are going on in the shuttle processing facility. Many technicians work simultaneously on the space shuttle structure, which results in structural movements and vibrations.

This paper will cover a portable, ultra-fast data acquisition approach used to scan surfaces in this unstable environment.

Subject Terms
- Computer-aided manufacturing (CAM)
- Computer-Aided Design (CAD)
- Thermal Protection System (TPS)