NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Method for Estimating Operational Loads on Aerospace Structures Using Span-Wisely Distributed Surface StrainsThis report presents a new method for estimating operational loads (bending moments, shear loads, and torques) acting on slender aerospace structures using distributed surface strains (unidirectional strains). The surface strain-sensing stations are to be evenly distributed along each span-wise strain-sensing line. A depth-wise cross section of the structure along each strain-sensing line can then be considered as an imaginary embedded beam. The embedded beam was first evenly divided into multiple small domains with domain junctures matching the strain-sensing stations. The new method is comprised of two steps. The first step is to determine the structure stiffness (bending or torsion) using surface strains obtained from a simple bending (or torsion) loading case, for which the applied bending moment (or torque) is known. The second step is to use the strain-determined structural stiffness (bending or torsion), and a new set of surface strains induced by any other loading case to calculate the associated operational loads (bending moments, shear loads, or torques). Performance of the new method for estimating operational loads was studied in light of finite-element analyses of several example structures subjected to different loading conditions. The new method for estimating operational loads was found to be fairly accurate, and is very promising for applications to the flight load monitoring of flying vehicles with slender wings.
Document ID
20130013606
Acquisition Source
Armstrong Flight Research Center
Document Type
Technical Publication (TP)
Authors
Ko, William L.
(NASA Dryden Flight Research Center Edwards, CA, United States)
Fleischer, Van Tran
(NASA Dryden Flight Research Center Edwards, CA, United States)
Date Acquired
August 27, 2013
Publication Date
April 1, 2013
Subject Category
Structural Mechanics
Report/Patent Number
NASA/TP-2013-216518
DFRC-E-DAA-TN8464
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Patent
U.S. Patent-7,715,994
Patent Application
No Preview Available