NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal IngestionThe occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in flight. The computational tool was utilized to help guide a portion of the PSL testing, and was used to predict ice accretion could also occur at significantly lower altitudes. The predictions were qualitatively verified by subsequent testing of the engine in the PSL. The PSL test has helped to calibrate the engine icing computational tool to assess the risk of ice accretion. The results from the computer simulation identified prevalent trends in wet bulb temperature, ice particle melt ratio, and engine inlet temperature as a function of altitude for predicting engine icing risk due to ice crystal ingestion.
Document ID
20140003875
Acquisition Source
Glenn Research Center
Document Type
Technical Memorandum (TM)
Authors
Jorgenson, Philip C. E.
(NASA Glenn Research Center Cleveland, OH, United States)
Veres, Joseph P.
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
April 28, 2014
Publication Date
October 1, 2013
Subject Category
Aeronautics (General)
Aircraft Propulsion And Power
Aerodynamics
Air Transportation And Safety
Report/Patent Number
AIAA Paper-2013-2679
E-18797
NASA/TM-2013-218097
Meeting Information
Meeting: Atmospheric and Space Environments Conference
Location: San Diego, CA
Country: United States
Start Date: June 24, 2013
End Date: June 27, 2013
Sponsors: American Inst. of Aeronautics and Astronautics
Funding Number(s)
WBS: WBS 648987.02.02.03.20
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available