An Analysis of Heavy-Ion Single Event Effects for a Variety of Finite State-Machine Mitigation Strategies

Melanie Berg, AS&D Inc. in support of NASA/GSFC
Melanie.D.Berg@NASA.gov
Kenneth Label: NASA/GSFC
Hak Kim, Anthony Phan, Christina Seidleck: AS&D Inc.

Acronyms

- Device Under Test (DUT)
- Edge-triggered flip-flops (DFFs)
- Error Detection and Correction (EDAC)
- Finite state machine: (FSM)
- Field programmable gate array (FPGA)
- Input – output (I/O)
- Linear energy transfer (LET)
- Localized triple mode redundancy (LTMR)
- Low cost digital tester (LCDT)
- Probability of logic masking (P_{logic})
- Radiation Effects and Analysis Group (REAG)
- Single event effects (SEE)
- Single event transient (SET)
- Single event upset (SEU)
- Single event upset cross-section (\sigma_{SEU})
- Static random access memory (SRAM)
FSMs Implemented in FPGAs Targeted for Critical Applications

- FSMs are used to control operational flow in FPGA devices.
- Because of their ease of interpretation, FSMs simplify the design and verification process and consequently are significant components in a synchronous design.
- By definition, the current state of an FSM is stored in DFFs.
- Significance: can be detrimental to system operation if an FSM were to change its state due to an SEU in one of its DFFs.

Motivation: FSM Mitigation and SEU Testing

- Techniques have been applied to FSMs that either:
 - Correct the current state of an FSM,
 - Detect incorrect state transition, or
 - Auto-transition to a new state if an un-mapped state is reached (“safe state-machine” which is very UNSAFE).
- Currently, no heavy-ion or proton SEU studies have been performed that measure the efficacy of any of these mitigation approaches.
Overview

- Define FSMs and various mitigation strategies that can be applied to them.
- Discuss Goal of SEU testing: to investigate mitigation efficacy while varying frequency and giving attention to global route SEEs.
- Discuss a scheme that can be used to test the efficacy of SEU FSM mitigation strategies and provide corresponding SEU test data.

We used the Microsemi ProASIC3 and the Virtex-5QV as DUTs. Data presented is from the ProASIC3 SEU testing.

Synchronous FSMs and SEUs

- A synchronous FSM is designed to deterministically transition through a pattern of defined states.
- A synchronous FSM utilizes DFFs to hold its current state, transitions to a next state controlled by a clock edge and combinatorial logic, and only accepts inputs that have been synchronized to the same clock.
- FSM SEUs can occur from:
 - Caught data-path SETs,
 - DFF SEUs, and
 - Clock/Reset SETs.
Mapping States into DFFs

- Each state of an FSM must be mapped into some type of encoding (pattern of bits) stored in DFFs.
- Once the FSM state is mapped into a DFF state, it is considered a defined (legal) state.
- Based on the number of DFFs used (N), the total number of available DFF state mappings is 2^N.
- Unmapped DFF states are considered illegal states.

$2^3 = 8$ available DFF states
- 5 out of the 8 states are mapped
- 3 out of the 8 states are unused
- Other encoding schemes can be employed that use more than 3 DFFs.

5-State FSM Binary Encoding Example

Example of an FSM used to control a peripheral device

An SEU can change current state and cause a catastrophic event.
EDAC: Corrective FSM Mitigation

- Corrective FSM mitigation (as defined in this presentation) is a scheme that masks and corrects SEUs so that incorrect FSM state transitions do not occur.

- Scope of presentation focuses on two corrective mitigation approaches:
 - Localized triple modular redundancy (LTMR), and
 - Hamming Code-3.

- Auto transitioning (“safe state-machine”) is a reaction to a small subset of incorrect transitions (unmapped states). They do not protect against incorrect transitioning and are not in the scope of this presentation.

Adding Corrective Mitigation

- LTMR: Triplicate each DFF and use a majority voter.
 - Triplication + voter is treated as one DFF,
 - Encoding doesn’t change,
 - Resultant FSM has 3 times the number of DFFs than the original encoding scheme, and
 - Combinatorial logic (not including the voters) does not change.

- Hamming Code-3: requires a new encoding scheme.
Binary versus LTMR FSMs

- Binary implementation
- LTMR implementation: only change is each DFF is triplicated. Majority voter is used across the triplication.

Synchronous LTMR FSMs and SEUs

- Triplication plus majority voter protects against SEUs in DFFs.
- No mitigation in Data-path, consequently, data-path SETs can get caught by DFFs.
- If global routes (clocks and resets) are not hardened, then SETs can affect DFF states globally.
FSM Fault Tolerance:
5-State Conversion to a Hamming Code-3 FSM

Hamming Code-3 FSM Diagram for a 5 Base-State FSM: Would need $5 \times 7 = 35$ FSM states to be represented... 6 DFFs

State 0 (State IDLE) and Its Hamming-3 Companion States

SEU Testing of FSMs:
Efficacy of mitigation while investigating how frequency and global routing affect FSM σ_{SEUs}

LETs lower than 10 MeV-cm2/mg are used. Otherwise, global route SEUs dominate.
ProASIC3 SEU Heavy-Ion Test Structures:

- No error detection and correction: 8-bit Binary Encoding:
 - 256 FSM states total
 - Binary: 1 DFF per bit requires 8 DFFs

- Local triple modular redundancy (LTMR): 8-bit Binary Encoding:
 - 256 FSM states total
 - LTMR: 3 DFFs per bit requires 24 DFFs

- Hamming Code-3: 5-bit encoding:
 - 32 FSM states total
 - Hamming Code-3 must represent all states plus their companion states and requires 9 DFFs

For statistical analysis, a large number of each of these FSMs are implemented.
ProASIC3 Heavy-Ion FSM SEU Testing

SEU cross-sections per FSM. Scale is Log-Linear.

SEU cross-sections for global routes: (clocks and resets). Scale is linear-linear.

Novelty of SEU FSM Results

- The efficacy of previous EDAC+FSM studies was proven by means of theory or by fault injection in soft-configuration SRAM-based FPGAs.
- Problems:
 - Theory doesn’t take into account data-path SETs and global route upsets;
 - EDAC implementations with FSMs are not worth-while schemes in soft configuration devices. This cannot be uncovered using fault injection because global route SETs and frequency response cannot be fully investigated with fault injection; and,
 - In general, previous studies have no regard to LET (size of SET), global routes, or frequency of operation.
- This is the first study to investigate FSM SEU response to heavy-ions while taking into account frequency, SETs, and global routing effects.
Conclusions

- Utilizing the Snap-Shot test scheme has shown to be a reliable approach for investigating FSM SEEs.
- Analysis of non-mitigated FSM data shows that it cannot be assumed that the FSM-σ_{SEU} will increase across frequency.
 - Well-mitigated (e.g., LTMR and Hamming-3) FSM-σ_{SEU} increase across frequency.
 - Non-mitigated FSM-σ_{SEU} decrease across frequency.
- Well-mitigated FSM-σ_{SEU} will be lower than non-mitigated FSM-σ_{SEU}.
- Global routing:
 - A trade should be made prior to deciding whether to use mitigation because the global routing SEUs may be significant enough to erase the gains from additional mitigation circuitry.
 - At lower frequencies, mitigation will reduce global routing σ_{SEU}.

Acknowledgements

- Defense Threat Reduction Agency (DTRA)
- NASA Electronic Parts and Packaging (NEPP) Program
- Radiation Effects and Analysis Group (REAG) led by Kenneth LaBel and Jonathan Pellish.