NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Experimental Constraints on a Vesta Magma OceanA magma ocean model was devised to relate eucrites (basalts) and diogenites (orthopyroxenites), which are found mixed together as clasts in a suite of polymict breccias known as howardites. The intimate association of eucritic and diogenitic clasts in howardites argues strongly that these three classes of achondritic meteorites all originated from the same planetoid. Reflectance spectral evidence (including that from the DAWN mission) has long suggested that Vesta is indeed the Eucrite Parent Body. Specifically, the magma ocean model was generated as follows: (i) the bulk Vesta composition was taken to be 0.3 CV chondrite + 0.7 L chondrite but using only 10% of the Na2O from this mixture; (ii) this composition is allowed to crystallize at 500 bar until approx. 80% of the system is solid olivine + low-Ca pyroxene; (iii) the remaining 20% liquid crystallizes at one bar from 1250C to 1110C, a temperature slightly above the eucrite solidus. All crystallization calculations were performed using MELTS. In this model, diogenites are produced by cocrystallization of olivine and pyroxene in the >1250C temperature regime, with Main Group eucrite liquids being generated in the 1300-1250C temperature interval. Low-Ca pyroxene reappears at 1210C in the one-bar calculations and fractionates the residual liquid to produce evolved eucrite compositions (Stannern Trend). We have attempted to experimentally reproduce the <1250C portion of the MELTS Vesta magma ocean. In the MELTS calculation, the change from 500 bar to one bar results in a shift of the olivine:low-Ca pyroxene boundary so that the 1250C liquid is now in the olivine field and, consequently, olivine should be the first-crystallizing phase, followed by low-Ca pyroxene at 1210C, and plagioclase at 1170C. Because at one bar the olivine:low-Ca pyroxene boundary is a peritectic, fractional crystallization of the 1210C liquid proceeds with only pyroxene crystallization until plagioclase appears. Thus, the predictions of the MELTS calculation are clear and straightforward.
Document ID
20140012962
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Hoff, C.
(Massachusetts Univ. Amherst, MA, United States)
Jones, J. H.
(NASA Johnson Space Center Houston, TX, United States)
Le, L.
(Jacobs Technology, Inc. Houston, TX, United States)
Date Acquired
October 10, 2014
Publication Date
March 17, 2014
Subject Category
Lunar And Planetary Science And Exploration
Report/Patent Number
JSC-CN-30619
LPI Contrib 1634
Meeting Information
Meeting: Lunar and Planetary Science Conference
Location: The Woodlands, TX
Country: United States
Start Date: March 17, 2014
End Date: March 21, 2014
Sponsors: Universities Space Research Association, Lunar and Planetary Inst., NASA Johnson Space Center
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available