NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Nuclear Thermal Propulsion (NTP): A Proven, Growth Technology for Fast Transit Human Missions to MarsThe "fast conjunction" long surface stay mission option was selected for NASA's recent Mars Design Reference Architecture (DRA) 5.0 study because it provided adequate time at Mars (approx. 540 days) for the crew to explore the planet's geological diversity while also reducing the "1-way" transit times to and from Mars to approx. 6 months. Short transit times are desirable in order to reduce the debilitating physiological effects on the human body that can result from prolonged exposure to the zero-gravity (0-gE) and radiation environments of space. Recent measurements from the RAD detector attached to the Curiosity rover indicate that astronauts would receive a radiation dose of approx. 0.66 Sv (approx. 66 rem)-the limiting value established by NASA-during their 1-year journey in deep space. Proven nuclear thermal rocket (NTR) technology, with its high thrust and high specific impulse (Isp approx. 900 s), can cut 1-way transit times by as much as 50 percent by increasing the propellant capacity of the Mars transfer vehicle (MTV). No large technology scale-ups in engine size are required for these short transit missions either since the smallest engine tested during the Rover program-the 25 klbf "Pewee" engine is sufficient when used in a clustered arrangement of three to four engines. The "Copernicus" crewed MTV developed for DRA 5.0 is a 0-gE design consisting of three basic components: (1) the NTP stage (NTPS); (2) the crewed payload element; and (3) an integrated "saddle truss" and LH2 propellant drop tank assembly that connects the two elements. With a propellant capacity of approx. 190 t, Copernicus can support 1-way transit times ranging from approx. 150 to 220 days over the 15-year synodic cycle. The paper examines the impact on vehicle design of decreasing transit times for the 2033 mission opportunity. With a fourth "upgraded" SLS/HLV launch, an "in-line" LH2 tank element can be added to Copernicus allowing 1-way transit times of 130 days. To achieve 100 to 120 day transit times, Copernicus' saddle truss/drop tank assembly is replaced by a "star truss" assembly with paired modular drop tanks to further increase the vehicle's propellant capacity. The HLV launch count increases (from approx. 5 to 7) and a fourth engine is needed to reduce total mission burn time and gravity losses. Using a "split mission" approach, the NTPS, in-line tank and the saddle truss/LH2 drop tank elements can be configured as a pre-deployed Earth Return Vehicle/propellant tanker supporting 90-day crewed mission transits. The split mission approach also eliminates the need for on-orbit assembly. Mission scenario descriptions, key features and operational characteristics for five different vehicle configurations are presented.
Document ID
20140013259
Acquisition Source
Glenn Research Center
Document Type
Technical Memorandum (TM)
Authors
Borowski, Stanley K.
(NASA Glenn Research Center Cleveland, OH, United States)
McCurdy, David R.
(Vantage Partners, LLC Brook Park, OH, United States)
Packard, Thomas W.
(Vantage Partners, LLC Brook Park, OH, United States)
Date Acquired
October 29, 2014
Publication Date
October 1, 2014
Subject Category
Astronautics (General)
Spacecraft Propulsion And Power
Lunar And Planetary Science And Exploration
Report/Patent Number
AIAA Paper 2013-5354
NASA/TM-2014-218104
E-18821
Meeting Information
Meeting: Space 2013 Conference and Exposition
Location: San Diego, CA
Country: United States
Start Date: September 10, 2013
End Date: September 12, 2013
Sponsors: American Inst. of Aeronautics and Astronautics
Funding Number(s)
WBS: WBS 279585.04.01.22
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available