NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Investigation of Spiral Bevel Gear Condition Indicator Validation Via AC-29-2C Using Damage Progression TestsThis report documents the results of spiral bevel gear rig tests performed under a NASA Space Act Agreement with the Federal Aviation Administration (FAA) to support validation and demonstration of rotorcraft Health and Usage Monitoring Systems (HUMS) for maintenance credits via FAA Advisory Circular (AC) 29-2C, Section MG-15, Airworthiness Approval of Rotorcraft (HUMS) (Ref. 1). The overarching goal of this work was to determine a method to validate condition indicators in the lab that better represent their response to faults in the field. Using existing in-service helicopter HUMS flight data from faulted spiral bevel gears as a "Case Study," to better understand the differences between both systems, and the availability of the NASA Glenn Spiral Bevel Gear Fatigue Rig, a plan was put in place to design, fabricate and test comparable gear sets with comparable failure modes within the constraints of the test rig. The research objectives of the rig tests were to evaluate the capability of detecting gear surface pitting fatigue and other generated failure modes on spiral bevel gear teeth using gear condition indicators currently used in fielded HUMS. Nineteen final design gear sets were tested. Tables were generated for each test, summarizing the failure modes observed on the gear teeth for each test during each inspection interval and color coded based on damage mode per inspection photos. Gear condition indicators (CI) Figure of Merit 4 (FM4), Root Mean Square (RMS), +/- 1 Sideband Index (SI1) and +/- 3 Sideband Index (SI3) were plotted along with rig operational parameters. Statistical tables of the means and standard deviations were calculated within inspection intervals for each CI. As testing progressed, it became clear that certain condition indicators were more sensitive to a specific component and failure mode. These tests were clustered together for further analysis. Maintenance actions during testing were also documented. Correlation coefficients were calculated between each CI, component, damage state and torque. Results found test rig and gear design, type of fault and data acquisition can affect CI performance. Results found FM4, SI1 and SI3 can be used to detect macro pitting on two more gear or pinion teeth as long as it is detected prior to progressing to other components or transitioning to another failure mode. The sensitivity of RMS to system and operational conditions limit its reliability for systems that are not maintained at steady state. Failure modes that occurred due to scuffing or fretting were challenging to detect with current gear diagnostic tools, since the damage is distributed across all the gear and pinion teeth, smearing the impacting signatures typically used to differentiate between a healthy and damaged tooth contact. This is one of three final reports published on the results of this project. In the second report, damage modes experienced in the field will be mapped to the failure modes created in the test rig. The helicopter CI data will then be re-processed with the same analysis techniques applied to spiral bevel rig test data. In the third report, results from the rig and helicopter data analysis will be correlated. Observations, findings and lessons learned using sub-scale rig failure progression tests to validate helicopter gear condition indicators will be presented.
Document ID
20140017338
Acquisition Source
Glenn Research Center
Document Type
Technical Memorandum (TM)
Authors
Dempsey, Paula J.
(NASA Glenn Research Center Cleveland, OH United States)
Date Acquired
December 12, 2014
Publication Date
September 1, 2014
Subject Category
Mechanical Engineering
Report/Patent Number
E-18958
NASA/TM-2014-218384
GRC-E-DAA-TN17417
Funding Number(s)
WBS: WBS 380046.02.03.02.02.03
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Keywords
gears
bevel gears
health monitoring
No Preview Available