NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Using a laser aureole to invert lidar returnAn aureole generated by a laser beam was studied. The strength of the signal redirected towards a sensor high above the surface by a combination of one scattering event in the marine boundary layer (mbl) and one single reflection event from the ocean surface was estimated. A model of mbl aerosol size distributions was used to estimate Mie scattering for a wide range of meteorolocial conditions. The sea surface reflection was determined from a Gaussian model of the wave slopes. These laser aureoles which were estimated over the wide range of conditions and were normalized by the reflected laser light were found to be highly correlated with the optical depth of the boundary layer. By estimating optical depth from the aureole, the Bernoulli-Riccati inversion of lidar return could be constrained and the inversion accuracy improved. A Monte Carlo program was developed to study the laser aureole generated by up to 8 orders of reflection and scattering. The aureole was generated by a narrow, 10 nsec laser pulse at 1.06 microns and measured by a receiver 10 km above the ocean surface. The original theoretical computation compared well with the Monte Carlo method. When multiple scattereffects were included, the normalized aureole was still highly correlated with the mbl optical depth over the range of conditions.
Document ID
19870000859
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Hooper, W. P.
(Naval Research Lab., Washington, DC, United States)
Gerber, H.
(Naval Research Lab., Washington, DC, United States)
Date Acquired
August 13, 2013
Publication Date
August 1, 1986
Publication Information
Publication: NASA. Langley Research Center 13th International Laser Radar Conference
Subject Category
Lasers And Masers
Accession Number
87N10292
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available