NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Multidisciplinary design optimization using response surface analysisAerospace conceptual vehicle design is a complex process which involves multidisciplinary studies of configuration and technology options considering many parameters at many values. NASA Langley's Vehicle Analysis Branch (VAB) has detailed computerized analysis capabilities in most of the key disciplines required by advanced vehicle design. Given a configuration, the capability exists to quickly determine its performance and lifecycle cost. The next step in vehicle design is to determine the best settings of design parameters that optimize the performance characteristics. Typical approach to design optimization is experience based, trial and error variation of many parameters one at a time where possible combinations usually number in the thousands. However, this approach can either lead to a very long and expensive design process or to a premature termination of the design process due to budget and/or schedule pressures. Furthermore, one variable at a time approach can not account for the interactions that occur among parts of systems and among disciplines. As a result, vehicle design may be far from optimal. Advanced multidisciplinary design optimization (MDO) methods are needed to direct the search in an efficient and intelligent manner in order to drastically reduce the number of candidate designs to be evaluated. The payoffs in terms of enhanced performance and reduced cost are significant. A literature review yields two such advanced MDO methods used in aerospace design optimization; Taguchi methods and response surface methods. Taguchi methods provide a systematic and efficient method for design optimization for performance and cost. However, response surface method (RSM) leads to a better, more accurate exploration of the parameter space and to estimated optimum conditions with a small expenditure on experimental data. These two methods are described.
Document ID
19930007607
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Unal, Resit
(Old Dominion Univ. Norfolk, VA, United States)
Date Acquired
September 6, 2013
Publication Date
September 1, 1992
Publication Information
Publication: Hampton Univ., NASA(American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1992 p 189-190 (SEE N93-16760 05-80)
Subject Category
Aircraft Design, Testing And Performance
Accession Number
93N16796
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available