NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Automata network models of galaxy evolutionTwo ideas appear frequently in theories of star formation and galaxy evolution: (1) star formation is nonlocally excitatory, stimulating star formation in neighboring regions by propagation of a dense fragmenting shell or the compression of preexisting clouds; and (2) star formation is nonlocally inhibitory, making H2 regions and explosions which can create low-density and/or high temperature regions and increase the macroscopic velocity dispersion of the cloudy gas. Since it is not possible, given the present state of hydrodynamic modeling, to estimate whether one of these effects greatly dominates the other, it is of interest to investigate the predicted spatial pattern of star formation and its temporal behavior in simple models which incorporate both effects in a controlled manner. The present work presents preliminary results of such a study which is based on lattice galaxy models with various types of nonlocal inhibitory and excitatory couplings of the local SFR to the gas density, temperature, and velocity field meant to model a number of theoretical suggestions.
Document ID
19930017690
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Chappell, David
(Texas Univ. Austin, TX, United States)
Scalo, John
(Texas Univ. Austin, TX, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: NASA. Ames Research Center, The Evolution of Galaxies and Their Environment
Subject Category
Astrophysics
Accession Number
93N26879
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available