NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Three-dimensional unsteady flow calculations in an advanced gas generator turbineThis paper deals with the application of a three-dimensional, unsteady Navier-Stokes code for predicting the unsteady flow in a single stage of an advanced gas generator turbine. The numerical method solves the three-dimensional thin-layer Navier-Stokes equations, using a system of overlaid grids, which allow for relative motion between the rotor and stator airfoils. Results in the form of time averaged pressures and pressure amplitudes on the airfoil surfaces will be shown. In addition, instantaneous contours of pressure, Mach number, etc. will be presented in order to provide a greater understanding of the inviscid as well as the viscous aspects of the flowfield. Also, relevant secondary flow features such as cross-plane velocity vectors and total pressure contours will be presented. Prior work in two-dimensions has indicated that for the advanced designs, the unsteady interactions can play a significant role in turbine performance. These interactions affect not only the stage efficiency but can substantially alter the time-averaged features of the flow. This work is a natural extension of the work done in two-dimensions and hopes to address some of the issues raised by the two-dimensional calculations. These calculations are being performed as an integral part of an actual design process and demonstrate the value of unsteady rotor-stator interaction calculations in the design of turbomachines.
Document ID
19950017005
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Rangwalla, Akil A.
(MCAT Inst. Moffett Field, CA, United States)
Date Acquired
September 6, 2013
Publication Date
July 1, 1993
Publication Information
Publication: NASA. Marshall Space Flight Center, Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
95N23425
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available