NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Ground Based Studies of Thermocapillary Flows in Levitated DropsGround-based experiments together with analytical studies are presently being conducted for levitated drops. Both acoustic and electrostatic techniques are being employed to achieve levitation of drops in a gaseous environment. The scientific effort is principally on the thermal and the fluid phenomena associated with the local heating of levitated drops, both at 1-g and at low-g. In particular, the thermocapillary flow associated with local spot heating is being studied. Fairly stable acoustic levitation of drops has been achieved with some exceptions when random rotational motion of the drop persists. The flow visualization has been carried out by light scattering from smoke particles for the exterior flow and fluorescent tracer particles in the drop. The results indicate a lack of axial symmetry in the internal flow even though the apparatus and the heating are symmetric. The theoretical studies for the past year have included fundamental analyses of acoustically levitated spherical drops. The flow associated with a particle near the velocity antinode is being investigated by the singular perturbation technique. As a first step towards understanding the effect of the particle displacement from the antinode, the flow field about the node has been calculated for the first time. The effect of the acoustic field on the interior of a liquid drop has also been investigated. The results predict that the internal flow field is very weak.
Document ID
19970000439
Acquisition Source
Jet Propulsion Laboratory
Document Type
Conference Paper
Authors
Sadhal, Satwindar Singh
(University of Southern California Los Angeles, CA United States)
Trinh, Eugene H.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Date Acquired
August 17, 2013
Publication Date
September 1, 1996
Publication Information
Publication: Third Microgravity Fluid Physics Conference
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
97N10406
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available