NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
On the Boundary Conditions at an Oscillating Contact Line: A Physical/Numerical Experimental ProgramWe will pursue an improved physical understanding and mathematical model for the boundary condition at an oscillating contact line at high Reynolds number. We expect that the body force is locally unimportant for earth-based systems, and that the local behavior may dominate the mechanics of partially-filled reservoirs in the microgravity environment. One important space-based application for this contact-line study is for Faraday-waves. Oscillations in the direction of gravity (or acceleration) can dominate the fluid motion during take-off and reentry with large steady-state accelerations and in orbit, where fluctuations on the order of 10(exp -4)g occur about a zero mean. Our experience with Faraday waves has shown them to be 'cleaner' than those produced by vertical or horizontal oscillation of walls. They are easier to model analytically or computationally, and they do not have strong vortex formation at the bottom of the plate. Hence many, if not most, of the experiments will be performed in this manner. The importance of contact lines in the microgravity environment is well established. We will compare high resolution measurements of the velocity field (lO micro-m resolution) using particle-tracking and particle-image velocimetry as the fluid/fluid interface is approached from the lower fluid. The spatial gradients in the deviation provide additional means to determine an improved boundary condition and a measure of the slip region. Dissipation, the size of the eddy near the contact line, and hysteresis will be measured and compare to linear and nonlinear models of viscous and irrotational but dissipative models.
Document ID
19970000454
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Perlin, Marc
(Michigan Univ. Ann Arbor, MI United States)
Schultz, William W.
(Michigan Univ. Ann Arbor, MI United States)
Date Acquired
August 17, 2013
Publication Date
September 1, 1996
Publication Information
Publication: Third Microgravity Fluid Physics Conference
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
97N10421
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available