NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A dynamic subgrid-scale model for LES of the G-equationTurbulent combustion is a difficult subject as it must deal with all of the issues found in both turbulence and combustion. (We consider only premixed flames in this paper, but some of the ideas can be applied to the non-premixed case.) As in many other fields, there are two limiting cases that are easier to deal with than the general case. These are the situations in which the chemical time scale is either much shorter or much longer than the time scale associated with the turbulence. We deal with the former case. In this limit, the flame is thin compared to the turbulence length scales and can be idealized as an infinitely thin sheet. This is commonly called the flamelet regime; it has been the subject of many papers and the basis for many models (see, e.g., Linan & Williams 1993). In the flamelet model, the local flame structure is assumed to be identical to the laminar flame structure; thus the flame propagates normal to itself at the laminar flame speed, S(sub L). This allows the use of simple approximations. For example, one expects the rate of consumption of fuel to be proportional to the area of the flame surface. This idea allowed Damkohler (1940) to propose that the wrinkled flame could be replaced by a smooth one which travels at the turbulent flame speed, S(sub T), defined by S(sub T)/S(sub L) = A(sub L) /A(sub P) where A(sub L) is the total flame surface area and AP is the area projected onto the mean direction of propagation. This relation can be expected to be valid when the flame structure is modified only slightly by the turbulence. More recent approaches have attempted to relate the turbulent flame speed to turbulence intensity, u(sub '), which presumably, characterizes the wrinkling of the flame.
Document ID
19970014660
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Bourlioux, A.
(Montreal Univ. Quebec Canada)
Im, H. G.
(Stanford Univ. Stanford, CA United States)
Ferziger, J. H.
(Stanford Univ. Stanford, CA United States)
Date Acquired
August 17, 2013
Publication Date
December 1, 1996
Publication Information
Publication: Studying Turbulence Using Numerical Simulation Databases
Volume: Part 6
Subject Category
Inorganic And Physical Chemistry
Accession Number
97N18001
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available