NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Joining of Silicon Carbide-Based Ceramics by Reaction Forming MethodRecently, there has been a surge of interest in the development and testing of silicon-based ceramics and composite components for a number of aerospace and ground based systems. The designs often require fabrication of complex shaped parts which can be quite expensive. One attractive way of achieving this goal is to build up complex shapes by joining together geometrically simple shapes. However, the joints should have good mechanical strength and environmental stability comparable to the bulk materials. These joints should also be able to maintain their structural integrity at high temperatures. In addition, the joining technique should be practical, reliable, and affordable. Thus, joining has been recognized as one of the enabling technologies for the successful utilization of silicon carbide based ceramic components in high temperature applications. Overviews of various joining techniques, i.e., mechanical fastening, adhesive bonding, welding, brazing, and soldering have been provided in recent publications. The majority of the techniques used today are based on the joining of monolithic ceramics with metals either by diffusion bonding, metal brazing, brazing with oxides and oxynitrides, or diffusion welding. These techniques need either very high temperatures for processing or hot pressing (high pressures). The joints produced by these techniques have different thermal expansion coefficients than the ceramic materials, which creates a stress concentration in the joint area. The use temperatures for these joints are around 700 C. Ceramic joint interlayers have been developed as a means of obtaining high temperature joints. These joint interlayers have been produced via pre-ceramic polymers, in-situ displacement reactions, and reaction bonding techniques. Joints produced by the pre-ceramic polymer approach exhibit a large amounts of porosity and poor mechanical properties. On the other hand, hot pressing or high pressures are needed for in-situ displacement reactions and reaction bonding techniques. Due to the equipment required, these techniques are impractical for joining large or complex shaped components.
Document ID
19970024960
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Singh, M.
(NYMA, Inc. Brook Park, OH United States)
Kiser, J. D.
(NASA Lewis Research Center Cleveland, OH United States)
Date Acquired
August 17, 2013
Publication Date
April 1, 1997
Publication Information
Publication: Physics and Process Modeling (PPM) and Other Propulsion R and T
Volume: 1
Subject Category
Nonmetallic Materials
Report/Patent Number
Paper-5-Vol-1
Accession Number
97N24659
Funding Number(s)
CONTRACT_GRANT: NAS3-27186
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available