NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Application of Parametrized Post-Newtonian Methods to the Gravitational IS of Satellite Energy Exchange DataProject Satellite Energy Exchange (SEE) is a free-flying, high altitude satellite that utilizes space to construct a passive, low-temperature, nano-g environment in order to accurately measure the poorly known gravitational constant G plus other gravitational parameters that are difficult to measure in an earth-based laboratory. Eventually data received from SEE must be analyzed using a model of the gravitational interaction including parameters that describe deviations from general relativity and experiment. One model that can be used to fit tile data is the Parametrized post- Newtonian (PPN) approximation of general relativity (GR) which introduces ten parameters which have specified values in (GR). It is the lowest-order, consistent approximation that contains non linear terms. General relativity predicts that the Robertson parameters, gamma (light deflection), and beta (advance of the perihelion), are both 1 in GR. Another eight parameters, alpha(sub k), k=1,2,3 and zeta(sub k), k=1,2,3,4 and Xi are all zero in GR. Non zero values for alpha(sub k) parameters predict preferred frame effects; for zeta(sub k) violations of globally conserved quantities such as mass, momentum and angular momentum; and for Xi a contribution from the Whitehead theory of gravitation, once thought to be equivalent to GR. In addition, there is the possibility that there may be a preferred frame for the universe. If such a frame exists, then all observers must measure the velocity omega of their motion with respect to this universal rest frame. Such a frame is somewhat reminiscent of the concept of the ether which was supposedly the frame in which the velocity of light took the value c predicted by special relativity. The SEE mission can also look for deviations from the r(exp -2) law of Newtonian gravity, adding parameters alpha and lamda for non Newtonian behavior that describe the magnitude and range of the r(exp -2) deviations respectively. The foundations of the GR supposedly agree with Newtonian gravity to first order so that the parameters alpha and lamda are zero in GR. More important, however, GR subsequently depends on this Newtonian approximation to build up the non linear higher-order terms which forms the basis of the PPN frame work.
Document ID
19990010045
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Smalley, Larry L.
(Alabama Univ. Huntsville, AL United States)
Date Acquired
August 19, 2013
Publication Date
September 1, 1998
Subject Category
Spacecraft Design, Testing And Performance
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available