NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Solidification of II-VI Compounds in a Rotating Magnetic FieldThis project is aimed at using a rotating magnetic field (RMF) to control fluid flow and transport during directional solidification of elemental and compound melts. Microgravity experiments have demonstrated that small amounts of residual acceleration of less than a micro-g can initiate and prolong fluid flow, particularly when there is a static component of the field perpendicular to the liquid solid interface. Thus a true diffusion boundary layer is not formed, and it becomes difficult to verify theories of solidification or to achieve diffusion controlled solidification. The RMF superimposes a stirring effect on an electrically conducting liquid, and with appropriate field strengths and frequencies, controlled transport of material through a liquid column can be obtained. As diffusion conditions are precluded and complete mixing conditions prevail, the technique is appropriate for traveling solvent zone or float zone growth methods in which the overall composition of the liquid can be maintained throughout the growth experiment. Crystals grown by RMF techniques in microgravity in previous, unrelated missions have shown exceptional properties. The objective of the project is two-fold, namely (1) using numerical modeling to simulate the behavior of a solvent zone with applied thermal boundary conditions and demonstrate the effects of decreasing gravity levels, or an increasing applied RMF, or both, and (2) to grow elements and II-VI compounds from traveling solvent zones both with and without applied RMFs, and to determine objectively how well the modeling predicts solidification parameters. Numerical modeling has demonstrated that, in the growth of CdTe from a tellurium solution, a rotating magnetic field can advantageously modify the shape of the liquid solid interface such that the interface is convex as seen from the liquid. Under such circumstances, the defect structure is reduced as any defects which are formed tend to grow out and not propagate. The flow of liquid, however, is complex due to the competing flow induced by the rotating magnetic field and the buoyancy driven convection. When the acceleration forces are reduced to one thousandth of gravity, the flow pattern is much simplified and well controlled material transport through the solvent zone can be readily achieved. Triple axis diffractometry and x-ray synchrotron topography have demonstrated that there is no significant improvement in crystal quality for HgCdTe grown on earth from a tellurium solution when a rotating magnetic field is applied. However, modeling shows that the flow in microgravity with a rotating magnetic field would produce a superior product.
Document ID
19990040284
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Gillies, D. C.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Volz, M. P.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Mazuruk, K.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Motakef, S.
(Cape Simulations, Inc. Newton, MA United States)
Dudley, M.
(State Univ. of New York Stony Brook, NY United States)
Matyi, R.
(Wisconsin Univ. Madison, WI United States)
Date Acquired
August 19, 2013
Publication Date
February 1, 1999
Publication Information
Publication: NASA Microgravity Materials Science Conference
Subject Category
Materials Processing
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available