NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized MorphologiesA steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.
Document ID
20010004311
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Chen, Y.- J.
(Northwestern Univ. Chicago, IL United States)
Davis, S. H.
(Northwestern Univ. Chicago, IL United States)
Date Acquired
August 20, 2013
Publication Date
March 1, 1999
Publication Information
Publication: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference
Subject Category
Fluid Mechanics And Thermodynamics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available