NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Engineering of Novel Biocolloid SuspensionsColloidal suspensions are materials with a variety of uses from cleaners and lubricants to food, cosmetics, and coatings. In addition, they can be used as a tool for testing the fundamental tenets of statistical physics. Colloidal suspensions can be synthesized from a wide variety of materials, and in the form of monodisperse particles, which can self-assemble into highly ordered colloidal crystal structures. As such they can also be used as templates for the construction of highly ordered materials. Materials design of colloids has, to date, relied on entropic self-assembly, where crystals form as result of lower free energy due to a transition to order. Here, our goal is to develop a completely new method for materials fabrication using colloidal precursors, in which the self-assembly of the ordered colloidal structures is driven by a highly controllable, attractive interaction. This will greatly increase the range of potential structures that can be fabricated with colloidal particles. In this work, we demonstrate that colloidal suspensions can be crosslinked through highly specific biological crosslinking reactions. In particular, the molecules we use are protein-carbohydrate interactions derived from the immune system. This different driving force for self-assembly will yield different and novel suspensions structures. Because the biological interactions are heterotypic (A binding to B), this chemical system can be used to make binary alloys in which the two colloid subpopulations vary in some property - size, density, volume fraction, magnetic susceptibility, etc. An additional feature of these molecules which is unique - even within the realm of biological recognition - is that the molecules bind reversibly on reasonable time-scales, which will enable the suspension to sample different configurations, and allow us to manipulate and measure the size of the suspension dynamically. Because of the wide variety of structures that can be made from these novel colloids, and because the suspension structure can be altered dynamically, we believe this biocolloid system will yield a novel set of materials with many technological applications, including sensors (both biological and non-biological), optical filters and separation media.
Document ID
20010004336
Acquisition Source
Headquarters
Document Type
Abstract
Authors
Hammer, D. A.
(Pennsylvania Univ. Philadelphia, PA United States)
Rodges, S.
(Pennsylvania Univ. Philadelphia, PA United States)
Hiddessen, A.
(Pennsylvania Univ. Philadelphia, PA United States)
Weitz, D. A.
(Pennsylvania Univ. Philadelphia, PA United States)
Date Acquired
August 20, 2013
Publication Date
March 1, 1999
Publication Information
Publication: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference
Subject Category
Fluid Mechanics And Thermodynamics
Funding Number(s)
OTHER: 96-HEDS-01-168
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available