NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Flow-induced birefringence measurement system using dual-crystal transverse electro-optic modulator for microgravity fluid physics applicationsWe have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.
Document ID
20010004365
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Mackey, Jeffrey R.
(NYMA, Inc. Brook Park, OH United States)
Date Acquired
August 20, 2013
Publication Date
March 1, 1999
Publication Information
Publication: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference
Subject Category
Fluid Mechanics And Thermodynamics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available