NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Large-Scale Flow Structure in Turbulent Nonpremixed Flames under Normal- And Low-Gravity ConditionsIt is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. Buoyancy acts by inducing baroclinic torques, which generate large-scale vortical structures that can significantly modify the flow field. Furthermore, some suggest that buoyancy can substantially influence the large-scale structure of even nominally momentum-dominated flames, since the low velocity flow outside of the flame will be more susceptible to buoyancy effects. Even subtle buoyancy effects may be important because changes in the large-scale structure affects the local entrainment and fluctuating strain rate, and hence the structure of the flame. Previous studies that have compared the structure of normal- and micro-gravity nonpremixed jet flames note that flames in microgravity are longer and wider than in normal-gravity. This trend was observed for jet flames ranging from laminar to turbulent regimes. Furthermore, imaging of the flames has shown possible evidence of helical instabilities and disturbances starting from the base of the flame in microgravity. In contrast, these characteristics were not observed in normal-gravity. The objective of the present study is to further advance our knowledge of the effects of weak levels of buoyancy on the structure of transitional and turbulent nonpremixed jet flames. In later studies we will utilize the drop tower facilities at NASA Glenn Research Center (GRC), but the preliminary work described in this paper was conducted using the 1.25-second drop tower located at the University of Texas at Austin. A more detailed description of these experiments can be found in Idicheria et al.
Document ID
20010074027
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Clemens, N. T.
(Texas Univ. Austin, TX United States)
Idicheria, C. A.
(Texas Univ. Austin, TX United States)
Boxx, I. G.
(Texas Univ. Austin, TX United States)
Date Acquired
August 20, 2013
Publication Date
May 1, 2001
Publication Information
Publication: Sixth International Microgravity Combustion Workshop
Subject Category
Inorganic, Organic And Physical Chemistry
Funding Number(s)
CONTRACT_GRANT: NCC3-677
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available