NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Combustion of Metals in Carbon Dioxide and Reduced-Gravity EnvironmentsOngoing exploration and future mission2001110444 s to Mars have given impetus to research on the use of natural resources of the planet. Since carbon dioxide (CO2) constitutes approximately 95% of the Mars atmosphere and since it reacts directly and vigorously with several metals, this investigation focuses on metal-CO2 reactions as a possible combination for rocket-propellant production and energy generation. Magnesium (Mg) has been initially selected as the metal fuel owing to its low ignition temperature and high specific impulse and burning rate in CO2. Our studies in this field started with low gravity (g) combustion tests of Mg in O2, CO2, and CO. Reduced gravity provided a clear picture of the burning phenomena by eliminating the intrusive buoyant flows in high-temperature metal reactions and by removing the destructive effect of gravity on the shape of molten metal samples. Suspended cylindrical metal samples of 2, 3, and 4-mm in diameter and length were radiatively ignited in low-g to generate free-floating samples exhibiting a spherically symmetric flame with increasing metal-oxide accumulation in an outer shell. For the Mg-CO2 combination, burning times twice as long as in normal-g and five times longer than in Mg-O2 flames were observed, revealing a diffusion-controlled reaction. The burning time is proportional to the square of the sample diameter. In tests conducted with pure CO, combustion was not possible without constant heating of the sample due to the formation of a thick carbon-containing coating around the Mg sample generated by surface reactions. The following work presents two new studies that attempt to explain some of the low-g experimental observations. First, a simplified one-dimensional, quasi-steady numerical model is developed to obtain temperature, species concentrations, and burning rates of the spherically symmetric diffusion flame around the Mg sample burning in O2 and CO2. Second, a Planar Laser Induced Fluorescence (PLIF) technique is implemented to provide spatially resolved measurements of magnesium oxide (MgO) in the reaction zone of Mg samples burning in O2 and CO2. These experiments reveal fundamental differences between the two combustion systems.
Document ID
20010074061
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Branch, M. C.
(Colorado Univ. Boulder, CO United States)
Abbud-Madrid, A.
(Colorado Univ. Boulder, CO United States)
Modak, A.
(Colorado Univ. Boulder, CO United States)
Dreyer, C. B.
(Colorado Univ. Boulder, CO United States)
Daily, J. W.
(Colorado Univ. Boulder, CO United States)
Date Acquired
August 20, 2013
Publication Date
May 1, 2001
Publication Information
Publication: Sixth International Microgravity Combustion Workshop
Subject Category
Inorganic, Organic And Physical Chemistry
Funding Number(s)
CONTRACT_GRANT: NAG3-2220
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available