NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Carbon Dioxide Convection in the Martian Polar Night and Its Implications for Polar ProcessesEach Martian year nearly 30% of the atmosphere is exchanged with the polar ice caps. This exchange occurs through a combination of direct surface condensation and atmospheric precipitation of carbon dioxide. It has long been thought the amount of condensation within the polar night is maintained by a balance between diabatic processes such as radiative cooling and latent heating from condensing CO2. This assumption manifests itself in Mars General Circulation Models (GCM) in such a way as to never allow the atmospheric temperature to dip below the saturation temperature of CO2. However, observations from Mars Global Surveyor (MGS) Radio Science (RS) and the Thermal Emission Spectrometer (TES) have demonstrated this assumption to be, at best, approximate. Both RS and TES observations within the polar nights of both poles indicate substantial supersaturated regions with respect to CO2. The observed temperature profiles suggest conditionally unstable regions containing planetary significant amounts of potential convective energy. Presented here are estimates of the total planetary inventory of convective available potential energy (CAPE) and the potential convective energy flux (PCEF). The values for CAPE and PCEF are derived from RS temperature profiles and compared to Mars GCM results using a new convective CO2 cloud model that allows for the formation of CAPE.
Document ID
20040085629
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Colaprete, A.
(Search for Extraterrestrial Intelligence Inst. Mountain View, CA, United States)
Haberle, R. M.
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Third International Conference on Mars Polar Science and Exploration
Subject Category
Lunar And Planetary Science And Exploration
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available