NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Comparative Planetary Mineralogy: Valence State Partitioning of Cr, Fe, Ti, and V Among Crystallographic Sites in Olivine, Pyroxene, and Spinel from Planetary BasaltsWe have considered the valence-state partitioning of Cr, Fe, Ti, and V over crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. The sites that accommodate these cations are the M2 site (6-8 coordinated) and M1 site (6 coordinated) in pyroxene, the M2 site (6-8 coordinated) and M1 site (6 coordinated) in olivine, and the tetrahedral and octahedral sites in spinel. The samples we studied are basalts from Earth, Moon, and Mars, which have fO2 conditions that range from IW-2 (Moon) to IW+6 (Earth) with Mars somewhere between at IW to IW+2. In this range of fO2 the significant elemental valences are (from low to high fO2) Ti4+, V3+, Fe2+, Cr2+, Cr3+, V3+, V4+, and Fe3+. V2+ and Ti3+ play a minor role in the phases considered for the Moon, and are probably in very low concentrations. V5+ plays a minor role in these phases in terrestrial basalts because it is probably in lower abundance than V4+ and it has an ionic radii that is so small (0.054 nm, 6- coordinated,[1]) that it is almost at the lower limit for octahedral coordination. The role of Cr2+ in the Moon is significant, as Sutton et al. [2] found that lunar olivine contains mostly Cr2+ while coexisting pyroxene contains mostly Cr3+. Hanson one vacancy only accommodates one V4+. Thus more vacancies are required in V4+ substitutions into olivine. In the Moon V3+ is much more abundant than V4+ [7, 8]. Thus in lunar chromite V3+ follows Cr3+, whereas in Earth V4+ (which is much greater in abundance than V3+) follows Ti4+ (eg in ulv spinel). We could go on in this vein for some time but space limitations do not permit us to do so.
Document ID
20050173933
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Papike, J. J.
(New Mexico Univ. Albuquerque, NM, United States)
Karner, J. M.
(New Mexico Univ. Albuquerque, NM, United States)
Shearer, C. K.
(New Mexico Univ. Albuquerque, NM, United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2005
Publication Information
Publication: Lunar and Planetary Science XXXVI, Part 16
Subject Category
Geophysics
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available