NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Single-Mode WGM Resonators Fabricated by Diamond TurningA diamond turning process has made possible a significant advance in the art of whispering-gallery-mode (WGM) optical resonators. By use of this process, it is possible to fashion crystalline materials into WGM resonators that have ultrahigh resonance quality factors (high Q values), are compact (ranging in size from millimeters down to tens of microns), and support single electromagnetic modes. This development combines and extends the developments reported in "Few- Mode Whispering-Gallery-Mode Resonators" (NPO-41256), NASA Tech Briefs, Vol. 30, No. 1 (January 2006), page 16a and "Fabrication of Submillimeter Axisymmetric Optical Components" (NPO-42056), NASA Tech Briefs, Vol. 31, No. 5 (May 2007), page 10a. To recapitulate from the first cited prior article: A WGM resonator of this special type consists of a rod, made of a suitable transparent material, from which protrudes a thin circumferential belt of the same material. The belt is integral with the rest of the rod and acts as a circumferential waveguide. If the depth and width of the belt are made appropriately small, then the belt acts as though it were the core of a single-mode optical fiber: the belt and the rod material adjacent to it support a single, circumferentially propagating mode or family of modes. To recapitulate from the second cited prior article: A major step in the fabrication of a WGM resonator of this special type is diamond turning or computer numerically controlled machining of a rod of a suitable transparent crystalline material on an ultrahigh-precision lathe. During the rotation of a spindle in which the rod is mounted, a diamond tool is used to cut the rod. A computer program is used to control stepping motors that move the diamond tool, thereby controlling the shape cut by the tool. Because the shape can be controlled via software, it is possible to choose a shape designed to optimize a resonator spectrum, including, if desired, to limit the resonator to supporting a single mode. After diamond turning, a resonator can be polished to increase its Q. By virtue of its largely automated, computer-controlled nature, the process is suitable for mass production of nominally identical single-mode WGM resonators. In a demonstration of the capabilities afforded by this development, a number of WGM resonators of various designs were fabricated side by side on the surface of a single CaF2 rod (see figure).
Document ID
20090017561
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Grudinin, Ivan
(California Inst. of Tech. Pasadena, CA, United States)
Maleki, Lute
(California Inst. of Tech. Pasadena, CA, United States)
Savchenkov, Anatoliy
(California Inst. of Tech. Pasadena, CA, United States)
Matsko, Andrewy
(California Inst. of Tech. Pasadena, CA, United States)
Strekalov, Dmitry
(California Inst. of Tech. Pasadena, CA, United States)
Iltchenko, Vladimir
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
May 1, 2008
Publication Information
Publication: NASA Tech Briefs, May 2008
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
NPO-43070
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available