NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Progress Toward a Compact, Highly Stable Ion ClockThere was an update on the subject of two previous NASA Tech Briefs articles: Compact, Highly Stable Ion Clock (NPO-43075), Vol. 32, No. 5 (May 2008), page 63; and Neon as a Buffer Gas for a Mercury-Ion Clock (NPO-42919), Vol. 32, No. 7 (July 2008), page 62. To recapitulate: A developmental miniature mercury-ion clock has stability comparable to that of a hydrogen-maser clock. The ion-handling components are housed in a sealed vacuum tube, wherein a getter pump maintains the partial vacuum, and the evacuated tube is backfilled with mercury vapor in a neon buffer gas. There was progress in the development of the clock, with emphasis on the design, fabrication, pump-down, and bake-out of the vacuum tube (based on established practice in the travelingwave- tube-amplifier industry) and the ability of the tube to retain a vacuum after a year of operation. Other developments include some aspects of the operation of mercury-vapor source (a small appendage oven containing HgO) so as to maintain the optimum low concentration of mercury vapor, and further efforts to miniaturize the vacuum and optical subsystems to fit within a volume of 2 L.
Document ID
20090035902
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Prestage, John
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Chung, Sang
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
October 1, 2009
Publication Information
Publication: NASA Tech Briefs, October 2009
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
NPO-44139
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available