NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Self-Assembling, Flexible, Pre-Ceramic Composite PreformsIn this innovation, light weight, high temperature, compact aerospace structures with increased design options are made possible by using self-assembling, flexible, pre-ceramic composite materials. These materials are comprised of either ceramic or carbon fiber performs, which are infiltrated with polymer precursors that convert to ceramics upon thermal exposure. The preform architecture can vary from chopped fibers formed into blankets or felt, to continuous fibers formed into a variety of 2D or 3D weaves or braids. The matrix material can also vary considerably. For demonstration purposes, a 2D carbon weave was infiltrated with a SiC polymer precursor. The green or unfired material is fabricated into its final shape while it is still pliable. It is then folded or rolled into a much more compact shape, which will occupy a smaller space. With this approach, the part remains as one continuous piece, rather than being fabricated as multiple sections, which would require numerous seals for eventual component use. The infiltrated preform can then be deployed in-situ. The component can be assembled into its final shape by taking advantage of the elasticity of the material, which permits the structure to unfold and spring into its final form under its own stored energy. The pre-ceramic composites are converted to ceramics and rigidized immediately after deployment. The final ceramic composite yields a high-temperature, high-strength material suitable for a variety of aerospace structures. The flexibility of the material, combined with its high-temperature structural capacity after rigidization, leads to a less complex component design with an increased temperature range. The collapsibility of these structures allows for larger components to be designed and used, and also offers the potential for increased vehicle performance. For the case of collapsible nozzle extensions, a larger nozzle, and thus a larger nozzle exit plane, is possible because interference with surrounding structures can be avoided in the collapsed state. The larger exit plane leads to an increase in expansion area ratio, which has the potential to increase thrust and overall rocket performance. In general, the use of advanced ceramic materials can lead to improved engine and vehicle performance. The ceramics can run hotter, so less cooling is required. Fuel to coolant ratios can be balanced more readily to reduce weight. Engine efficiency can also be increased with hotter combustion and exhaust temperatures. In addition, the ceramic composites themselves can reduce the component weight by as much as 50 percent, which can translate into greater payload for the vehicle
Document ID
20090040045
Acquisition Source
Glenn Research Center
Document Type
Other - NASA Tech Brief
Authors
Jaskowiak, Martha H.
(NASA Glenn Research Center Cleveland, OH, United States)
Eckel, Andrew J.
(NASA Glenn Research Center Cleveland, OH, United States)
Gorican, Daniel
(Arctic Slope Regional Corp. Anchorage, AK, United States)
Date Acquired
August 24, 2013
Publication Date
November 1, 2009
Publication Information
Publication: NASA Tech Briefs, November 2009
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
LEW-18421-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available