NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Critical Coupling Between Optical Fibers and WGM ResonatorsTwo recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:
Document ID
20090040082
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Matsko, Andrey
(California Inst. of Tech. Pasadena, CA, United States)
Maleki, Lute
(California Inst. of Tech. Pasadena, CA, United States)
Itchenko, Vladimir
(California Inst. of Tech. Pasadena, CA, United States)
Savchenkov, Anatoliy
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
November 1, 2009
Publication Information
Publication: NASA Tech Briefs, November 2009
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
NPO-45462
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available