NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Nanoionics-Based Switches for Radio-Frequency ApplicationsNanoionics-based devices have shown promise as alternatives to microelectromechanical systems (MEMS) and semiconductor diode devices for switching radio-frequency (RF) signals in diverse systems. Examples of systems that utilize RF switches include phase shifters for electronically steerable phased-array antennas, multiplexers, cellular telephones and other radio transceivers, and other portable electronic devices. Semiconductor diode switches can operate at low potentials (about 1 to 3 V) and high speeds (switching times of the order of nanoseconds) but are characterized by significant insertion loss, high DC power consumption, low isolation, and generation of third-order harmonics and intermodulation distortion (IMD). MEMS-based switches feature low insertion loss (of the order of 0.2 dB), low DC power consumption (picowatts), high isolation (>30 dB), and low IMD, but contain moving parts, are not highly reliable, and must be operated at high actuation potentials (20 to 60 V) generated and applied by use of complex circuitry. In addition, fabrication of MEMS is complex, involving many processing steps. Nanoionics-based switches offer the superior RF performance and low power consumption of MEMS switches, without need for the high potentials and complex circuitry necessary for operation of MEMS switches. At the same time, nanoionics-based switches offer the high switching speed of semiconductor devices. Also, like semiconductor devices, nanoionics-based switches can be fabricated relatively inexpensively by use of conventional integrated-circuit fabrication techniques. More over, nanoionics-based switches have simple planar structures that can easily be integrated into RF power-distribution circuits.
Document ID
20100005257
Acquisition Source
Glenn Research Center
Document Type
Other - NASA Tech Brief
Authors
Nessel, James
(NASA Glenn Research Center Cleveland, OH, United States)
Lee, Richard
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
August 25, 2013
Publication Date
February 1, 2010
Publication Information
Publication: NASA Tech Briefs, February 2010
Subject Category
Man/System Technology And Life Support
Report/Patent Number
LEW-18313-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available