NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Instruments for Reading Direct-Marked Data-Matrix SymbolsImproved optoelectronic instruments (specially configured digital cameras) for reading direct-marked data-matrix symbols on the surfaces of optically reflective objects (including specularly reflective ones) are undergoing development. Data-matrix symbols are two-dimensional binary patterns that are used, like common bar codes, for automated identification of objects. The first data-matrix symbols were checkerboard-like patterns of black-and-white rectangles, typically existing in the forms of paint, ink, or detachable labels. The major advantage of direct marking (the marks are more durable than are painted or printed symbols or detachable labels) is offset by a major disadvantage (the marks generated by some marking methods do not provide sufficient contrast to be readable by optoelectronic instruments designed to read black-and-white data-matrix symbols). Heretofore, elaborate lighting, lensing, and software schemes have been tried in efforts to solve the contrast problem in direct-mark matrix- symbol readers. In comparison with prior readers based on those schemes, the readers now undergoing development are expected to be more effective while costing less. All of the prior direct-mark matrix-symbol readers are designed to be aimed perpendicularly to marked target surfaces, and they tolerate very little angular offset. However, the reader now undergoing development not only tolerates angular offset but depends on angular offset as a means of obtaining the needed contrast, as described below. The prototype reader (see Figure 1) includes an electronic camera in the form of a charge-coupled-device (CCD) image detector equipped with a telecentric lens. It also includes a source of collimated visible light and a source of collimated infrared light for illuminating a target. The visible and infrared illumination complement each other: the visible illumination is more useful for aiming the reader toward a target, while the infrared illumination is more useful for reading symbols on highly reflective surfaces. By use of beam splitters, the visible and infrared collimated lights are introduced along the optical path of the telecentric lens, so that the target is illuminated and viewed from the same direction.
Document ID
20100014145
Acquisition Source
Marshall Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Schramm, Harry F.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Corder, Eric L.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 24, 2013
Publication Date
March 1, 2006
Publication Information
Publication: NASA Tech Briefs, March 2006
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MFS-31944-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available