NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Metal Side Reflectors for Trapping Light in QWIPsFocal-plane arrays of quantum-well infrared photodetectors (QWIPs) equipped with both light-coupling diffraction gratings and metal side reflectors have been proposed, and prototypes are expected to be fabricated soon. The purpose served by the metal side reflectors is to increase quantum efficiency by helping to trap light in the photosensitive material of each pixel. The reasons for using diffraction gratings were discussed in several prior NASA Tech Briefs articles. To recapitulate: In an array of QWIPs, the quantum-well layers are typically oriented parallel to the focal plane and therefore perpendicular or nearly perpendicular to the direction of incidence of infrared light. By virtue of the applicable quantum selection rules, light polarized parallel to the focal plane (as normally incident light is) cannot excite charge carriers and, hence, cannot be detected. Diffraction gratings scatter normally or nearly normally incident light into directions more nearly parallel to the focal plane, so that a significant portion of the light attains a component of polarization normal to the focal plane and, hence, can excite charge carriers. Unfortunately, light scattered in directions parallel or nearly parallel to the focal plane can escape sideways from the QWIP of a given pixel, as illustrated in Figure 1. The escaped light has made only a single pass through the interior photosensitive volume of the QWIP. The quantum efficiency of the QWIP would be increased by trapping light so that it makes multiple passes through the photosensitive volume. As shown in Figure 2, the sides of the QWIP of each pixel would be coated with gold to reflect escaping light back into the interior.
Document ID
20110024147
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Gunapala, Sarath
(California Inst. of Tech. Pasadena, CA, United States)
Bandara, Sumith
(California Inst. of Tech. Pasadena, CA, United States)
Liu, John
(California Inst. of Tech. Pasadena, CA, United States)
Ting, David
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 25, 2013
Publication Date
June 1, 2003
Publication Information
Publication: NASA Tech Briefs, June 2003
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-30507
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available