NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Planar Superconducting Millimeter-Wave/Terahertz Channelizing FilterThis innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels, with 50-GHz bandwidth, were designed, each using multiple transmission line media such as microstrip, coplanar waveguide, and quasi-lumped components on 0.45- m thick silicon. In the design process, modeling issues had to be overcome. Due to the extremely high frequencies, very thin Si substrate, and the superconducting metal layers, most commercially available software fails in various ways. These issues were mitigated by using alternative software that was capable of handling them at the expense of greater simulation time. The design of on-chip components for the filter characterization, such as a broadband antenna, Wilkinson power dividers, attenuators, detectors, and transitions has been completed.
Document ID
20130013820
Acquisition Source
Goddard Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Ehsan, Negar
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
U-yen, Kongpop
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Brown, Ari
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Hsieh, Wen-Ting
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Wollack, Edward
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Moseley, Samuel
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 27, 2013
Publication Date
June 1, 2013
Publication Information
Publication: NASA Tech Briefs, June 2013
Subject Category
Man/System Technology And Life Support
Report/Patent Number
GSC-16486-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available