NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Victim Simulator for Victim Detection RadarTesting of victim detection radars has traditionally used human subjects who volunteer to be buried in, or climb into a space within, a rubble pile. This is not only uncomfortable, but can be hazardous or impractical when typical disaster scenarios are considered, including fire, mud, or liquid waste. Human subjects are also inconsistent from day to day (i.e., they do not have the same radar properties), so quantitative performance testing is difficult. Finally, testing a multiple-victim scenario is difficult and expensive because of the need for multiple human subjects who must all be coordinated. The solution is an anthropomorphic dummy with dielectric properties that replicate those of a human, and that has motions comparable to human motions for breathing and heartbeat. Two airfilled bladders filled and drained by solenoid valves provide the underlying motion for vinyl bags filled with a dielectric gel with realistic properties. The entire assembly is contained within a neoprene wetsuit serving as a "skin." The solenoids are controlled by a microcontroller, which can generate a variety of heart and breathing patterns, as well as being reprogrammable for more complex activities. Previous electromagnetic simulators or RF phantoms have been oriented towards assessing RF safety, e.g., the measurement of specific absorption rate (SAR) from a cell phone signal, or to provide a calibration target for diagnostic techniques (e.g., MRI). They are optimized for precise dielectric performance, and are typically rigid and immovable. This device is movable and "positionable," and has motion that replicates the small-scale motion of humans. It is soft (much as human tissue is) and has programmable motions.
Document ID
20140001415
Acquisition Source
Headquarters
Document Type
Other - NASA Tech Brief
Authors
Lux, James P.
(California Inst. of Tech. Pasadena, CA, United States)
Haque, Salman
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
March 13, 2014
Publication Date
September 1, 2013
Publication Information
Publication: NASA Tech Briefs, September 2013
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-48793
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available