NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Nickel-Graphite Composite Compliant Interface and/or Hot Shoe MaterialNext-generation high-temperature thermoelectric-power-generating devices will employ segmented architectures and will have to reliably withstand thermally induced mechanical stresses produced during component fabrication, device assembly, and operation. Thermoelectric materials have typically poor mechanical strength, exhibit brittle behavior, and possess a wide range of coefficient of thermal expansion (CTE) values. As a result, the direct bonding at elevated temperatures of these materials to each other to produce segmented leg components is difficult, and often results in localized microcracking at interfaces and mec hanical failure due to the stresses that arise from the CTE mismatch between the various materials. Even in the absence of full mechanical failure, degraded interfaces can lead to increased electrical and thermal resistances, which adversely impact conversion efficiency and power output. The proposed solution is the insertion of a mechanically compliant layer, with high electrical and thermal conductivity, between the low- and high-temperature segments to relieve thermomechanical stresses during device fabrication and operation. This composite material can be used as a stress-relieving layer between the thermoelectric segments and/or between a thermoelectric segment and a hot- or cold-side interconnect material. The material also can be used as a compliant hot shoe. Nickel-coated graphite powders were hot-pressed to form a nickel-graphite composite material. A freestanding thermoelectric segmented leg was fabricated by brazing the compliant pad layer between the high-temperature p- Zintl and low-temperature p-SKD TE segments using Cu-Ag braze foils. The segmented leg stack was heated in vacuum under a compressive load to achieve bonding. The novelty of the innovation is the use of composite material that re duces the thermomechanical stresses en - countered in the construction of high-efficiency, high-temperature therm - o-electric devices. The compliant pad enables the bonding of dissimilar thermoelectric materials while maintaining the desired electrical and thermal properties essential for efficient device operation. The modulus, CTE, electrical, and thermal conductances of the composite can be controlled by varying the ratio of nickel to graphite.
Document ID
20140001425
Acquisition Source
Headquarters
Document Type
Other - NASA Tech Brief
Authors
Firdosy, Samad A.
(California Inst. of Tech. Pasadena, CA, United States)
Chun-Yip Li, Billy
(California Inst. of Tech. Pasadena, CA, United States)
Ravi, Vilupanur A.
(California Inst. of Tech. Pasadena, CA, United States)
Fleurial, Jean-Pierre
(California Inst. of Tech. Pasadena, CA, United States)
Caillat, Thierry
(California Inst. of Tech. Pasadena, CA, United States)
Anjunyan, Harut
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
March 13, 2014
Publication Date
September 1, 2013
Publication Information
Publication: NASA Tech Briefs, September 2013
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-48621
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available