NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging RadiometerAdvancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire spectral frequency band while exhibiting superb VSWR (voltage standing wave ratio) values. Element size and spacing requirements were addressed for a direct replacement of the thicker, lower-performance, stack ed patch antenna array currently employed for the HIRAD application. Several variants to the multiband arrays were developed that exhibited four, equally spaced, high efficiency, "sweet spot" frequency bands, as well as the option for a high-performance wideband array. The 0.25-in. (≈6.4- mm) thickness of the antenna stack-up itself was achieved through the application of specialized antenna techniques and meta-materials to accomplish all design objectives.
Document ID
20140001434
Acquisition Source
Headquarters
Document Type
Other - NASA Tech Brief
Authors
Little, John
(Spectra Research, Inc. Dayton, OH, United States)
Date Acquired
March 13, 2014
Publication Date
September 1, 2013
Publication Information
Publication: NASA Tech Briefs, September 2013
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MFS-33005-1
MFS-33005-1
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available