NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
High-Melt Carbon-Carbon Coating for Nozzle ExtensionsCarbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.
Document ID
20160005370
Acquisition Source
Glenn Research Center
Document Type
Other
Authors
Thompson, James
(Carbon Carbon Advanced Technologies, Inc. Kennedale, TX, United States)
Date Acquired
April 26, 2016
Publication Date
August 1, 2015
Publication Information
Publication: An Overview of SBIR Phase 2 Materials Structures for Extreme Environments
Subject Category
Composite Materials
Spacecraft Propulsion And Power
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available