NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Iodine SatelliteThis project is a collaborative effort to mature an iodine propulsion system while reducing risk and increasing fidelity of a technology demonstration mission concept. 1 The FY 2014 tasks include investments leveraged throughout NASA, from multiple mission directorates, as a partnership with NASA Glenn Research Center (GRC), a NASA Marshall Space Flight Center (MSFC) Technology Investment Project, and an Air Force partnership. Propulsion technology is often a critical enabling technology for space missions. NASA is investing in technologies to enable high value missions with very small and low-cost spacecraft, even CubeSats. However, these small spacecraft currently lack any appreciable propulsion capability. CubeSats are typically deployed and drift without any ability to transfer to higher value orbits, perform orbit maintenance, or deorbit. However, the iodine Hall system can allow the spacecraft to transfer into a higher value science orbit. The iodine satellite (iSAT) will be able to achieve a (Delta)V of >500 m/s with <1 kg of solid iodine propellant, which can be stored in an unpressurized benign state prior to launch. The iSAT propulsion system consists of the 200 W Hall thruster, solid iodine propellant tank, a power processing unit, and the necessary valves and tubing to route the iodine vapor. The propulsion system is led by GRC, with critical hardware provided by the Busek Co. The propellant tank begins with solid iodine unpressurized on the ground and in-flight before operations, which is then heated via tank heaters to a temperature at which solid iodine sublimates to iodine vapor. The vapor is then routed through tubing and custom valves to control mass flow to the thruster and cathode assembly. 2 The thruster then ionizes the vapor and accelerates it via magnetic and electrostatic fields, resulting in thrust with a specific impulse >1,300 s. The iSAT spacecraft, illustrated in figure 1, is currently a 12U CubeSat. The spacecraft chassis will be constructed from aluminum with a finish to prevent iodine-driven corrosion. The iSAT spacecraft includes full three-axis control using wheels, magnetic torque rods, inertial management unit, and a suite of sensors and optics. The spacecraft will leverage heat generated by spacecraft components and radiators for a passive thermal control system.
Document ID
20160008064
Acquisition Source
Marshall Space Flight Center
Document Type
Other
Authors
Dankanich, John
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Kamhawi, Hani
(NASA Glenn Research Center Cleveland, OH, United States)
Szabo, James
(Busek (J.) Co., Inc. Natick, MA, United States)
Date Acquired
June 29, 2016
Publication Date
January 1, 2015
Publication Information
Publication: George C. Marshall Space Flight Center Research and Technology Report 2014
Subject Category
Spacecraft Design, Testing And Performance
Spacecraft Propulsion And Power
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available