NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The dynamic fission instability and the origin of the MoonA theory for the formation of the Moon which involves the dynamic fission of a rapidly rotating protoplanet, which might then result in the formation of the Earth and the Moon is discussed. The fission hypothesis was originally based on analytic, linearized models of the growth of asymmetry in homogenous bodies. The fully nonlinear evolution of the dynamic instability in inviscid, compressible bodies was calculated by numerical techniques. It was found that the dynamic instability degenerates into the ejection of a ring of matter with a substantial fraction of the mass, leaving behind a central body with most of the mass. The linearized analytical approach and the numerical approach were used to show that dynamic fission probably does not occur in rocky protoplanets. The numerical calculations are performed with a fully three dimensional hydrodynamical code, which allows the nonlinear, time evolution of the instability to be followed. Sequences of uniformly rotating equilibria were constructed and are used as the initial models for the fission calculations. An initially imposed asymmetry consisting of a 10% binary perturbation in the density was found to disappear on the rotational period time scale. No dynamic instability occurred. This result are verified by including the velocity dissipation terms in the linearized analysis of the stability of a Maclaurin spheroid: the dynamic instability disappears when the simulated viscous dissipation terms are included. It is concluded that any rocky body, even with considerable partial melt or a molten core, should be stable to dynamic fission; any rotational instability that occurs can only result in equatorial mass loss.
Document ID
19850005429
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Boss, A. P.
(Carnegie Institution of Washington Washington, DC, United States)
Mizuno, H.
(Carnegie Institution of Washington Washington, DC, United States)
Date Acquired
August 12, 2013
Publication Date
January 1, 1984
Publication Information
Publication: Lunar Planetary Inst. Conf. on the Origin of the Moon
Subject Category
Lunar And Planetary Exploration
Accession Number
85N13738
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available