NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Noble gases in meteorites and terrestrial planetsTerrestrial planets and chondrites have noble gas platforms that are sufficiently alike, especially Ne/Ar, that they may have acquired their noble gases by similar processes. Meteorites presumably obtained their noble gases during formation in the solar nebula. Adsorption onto C - the major gas carrier in chondrites - is the likely mechanism for trapping noble gases; recent laboratory simulations support this hypothesis. The story is more complex for planets. An attractive possibility is that the planets acquired their noble gases in a late accreting veneer of chondritic material. In chondrites, noble gases correlate with C, N, H, and volatile metals; by Occam's Razor, we would expect a similar coupling in planets. Indeed, the Earth's crust and mantle contain chondritic like trace volatiles and PL group metals, respectively and the Earth's oceans resemble C chondrites in their enrichment of D (8X vs 8-10X of the galactic D/H ratio). Models have been proposed to explain some of the specific noble gas patterns in planets. These include: (1) noble gases may have been directly trapped by preplanetary material instead of arriving in a veneer; (2) for Venus, irradiation of preplanetary material, followed by diffusive loss of Ne, could explain the high concentration of AR-36; (3) the Earth and Venus may have initially had similar abundances of noble gases, but the Earth lost its share during the Moon forming event; (4) noble gases could have been captured by planetestimals, possibly leading to gravitational fractionation, particularly of Xe isotopes and (5) noble gases may have been dissolved in the hot outer portion of the Earth during contact with a primordial atmosphere.
Document ID
19850025537
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Wacker, J. F.
(Chicago Univ. Chicago, IL, United States)
Date Acquired
August 12, 2013
Publication Date
January 1, 1985
Publication Information
Publication: Lunar and Planetary Inst. Terrest. Planets: Comp. Planetology
Subject Category
Lunar And Planetary Exploration
Accession Number
85N33850
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available