NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Modelling of Laser-Enhanced Chemical Vapor DepositionResearch is directed at development of a detailed model of mass and heat transfer and chemical reaction in the pyrolysis of silane for the growth of thin amorphous silicon substrates incorporating laser heating of the gas phase above the film. The model will be the basis for evaluation of the relative importances of the decomposition of SiH4 in the vapor phase, mass transfer of the intermediate species, e.g., SiH2, and the evolution of hydrogen gas. Plans are also underway for developing a model for homogeneous nucleation of Si in the vapor phase to model the rate limitations observed at high gas-phase temperatures and high partial pressures of silane. Work was concentrated on an almost one-dimensional model for the coupling of the CO2 laser beam for heat transfer of the vapor phase with simple kinetic models for SiH4 decomposition and subsequent absorption of Si vapor on the substrate. Mass transfer in the vapor phase is assumed to be solely by diffusion. The role of convection in the vapor phase caused by the large changes in density in and around the center of the laser beam will be analyzed to evaluate the potential of microgravity experiments for increasing the uniformity of the film and the deposition rate.
Document ID
19860000638
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Brown, R. A.
(Massachusetts Inst. of Tech. Cambridge, MA, United States)
Date Acquired
August 12, 2013
Publication Date
May 1, 1985
Publication Information
Publication: NASA, Washington Microgravity Sci. and Appl. Program Tasks
Subject Category
Astronautics (General)
Accession Number
86N10105
Funding Number(s)
CONTRACT_GRANT: NSG-7645
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available