NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Robust torque control of an elastic robotic arm based on invertibility and feedback stabilizationAn approach to the control of elastic robotic systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA-type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law, u sub d, is derived such that in the closed loop system, independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law, u sub s, is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that, in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u sub d + u sub s.
Document ID
19860058234
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Singh, S. N.
(Vigyan Research Associates, Inc. Hampton, VA, United States)
Schy, A. A.
(NASA Langley Research Center Hampton, VA, United States)
Date Acquired
August 12, 2013
Publication Date
January 1, 1985
Subject Category
Cybernetics
Accession Number
86A42972
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available