NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A generalized procedure for constructing an upwind-based TVD schemeA generalized formulation for constructing second- and higher-order accurate TVD (total variation diminishing) schemes is presented. A given scheme is made TVD by limiting antidiffusive flux differences with some nonlinear functions, so-called limiters. The general idea of the formulation and its mathematical proof of Harten's TVD conditions is shown by applying the Lax-Wendroff method to a scalar nonlinear equation and constant-coefficient system of conservation laws. For the system of equations, several definitions are derived for the argument used in the limiter function and present their performance to numerical experiments. Then the formulation is formally extended to the nonlinear system of equations. It is demonstrated that use of the present procedure allows easy conversion of existing central or upwind, and second- or higher-order differencing schemes so as to preserve monotonicity and to yield physically admissible solutions. The formulation is simple mathematically as well as numerically; neither matrix-vector multiplication nor Riemann solver is required. Roughly twice as much computational effort is needed as compared to conventional scheme. Although the notion of TVD is based on the initial value problem, application to the steady Euler equations of the formulation is also made. Numerical examples including various ranges of problems show both time- and spatial-accuracy in comparison with exact solutions.
Document ID
19870044917
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Liou, Meng-Sing
(NASA Lewis Research Center Cleveland, OH, United States)
Date Acquired
August 13, 2013
Publication Date
January 1, 1987
Subject Category
Aerodynamics
Report/Patent Number
AIAA PAPER 87-0355
Accession Number
87A32191
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available