NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Trajectory optimization and guidance law development for national aerospace plane applicationsThe problem of onboard trajectory optimization for an airbreathing, single-stage-to-orbit vehicle is examined. A simple model representative of the aerospace plane concept, including a dual-mode propulsion system composed of scramjet and rocket engines, is presented. Consideration is restricted to hypersonic flight within the atmosphere. An energy state approximation is used in a four-state model for flight of a point mass in a vertical plane. Trajectory constraints, including those of dynamic pressure and aerodynamic heating, are initially ignored. Singular perturbation methods are applied in solving the optimal control problem of minimum fuel climb. The resulting reduced solution for the energy state dynamics provides an optimal altitude profile dependent on energy level and control for rocket thrust. A boundary-layer analysis produces an approximate lift control solution in feedback form and accounts for altitude and flight path angle dynamics. The reduced solution optimal climb path is presented for the unconstrained case and the case for which a maximum dynamic pressure constraint is enforced.
Document ID
19880067340
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Calise, A. J.
(Georgia Inst. of Tech. Atlanta, GA, United States)
Corban, J. E.
(Georgia Inst. of Tech. Atlanta, GA, United States)
Flandro, G. A.
(Georgia Institute of Technology Atlanta, United States)
Date Acquired
August 13, 2013
Publication Date
January 1, 1988
Subject Category
Launch Vehicles And Space Vehicles
Meeting Information
Meeting: 1988 American Control Conference
Location: Atlanta, GA
Country: United States
Start Date: June 15, 1988
End Date: June 17, 1988
Accession Number
88A54567
Funding Number(s)
CONTRACT_GRANT: NAG1-784
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available