NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Transport dynamics calculated under the full Mie scattering theory for micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric spaceIn 1967, Lunar Explorer 35 was launched from the earth and placed into a stable orbit around the moon. The data from the dust particle experiment on this spacecraft were essentially continuous over a 5-yr period from the time of insertion in lunar orbit. Analysis of this data has been interpreted to show that micron-sized lunar ejecta leave the moon and traverse through selenocentric and cislunar space and obtain either interplanetary/heliocentric orbits or intercept the earth's magnetosphere and move into geocentric orbits. Extensive studies of the orbital trajectories of lunar particles in this size range have now been conducted that include a calculation of the solar radiation force using the full Mie scattering theory. A significant flux of particles with radii less than 0.1 micron are found to intercept the earth's magnetopause surface. This flux is shown to be strongly dependent upon both the particle's density and its index of refraction.
Document ID
19890049170
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Hyde, T. W.
(Baylor Univ. Waco, TX, United States)
Alexander, W. M.
(Baylor University Waco, TX, United States)
Date Acquired
August 14, 2013
Publication Date
January 1, 1989
Subject Category
Lunar And Planetary Exploration
Meeting Information
Meeting: Lunar and Planetary Science Conference
Location: Houston, TX
Country: United States
Start Date: March 14, 1988
End Date: March 18, 1988
Accession Number
89A36541
Funding Number(s)
CONTRACT_GRANT: NAGW-1282
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available