NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Design of optimally smoothing multi-stage schemes for the Euler equationsIn this paper, a method is developed for designing multi-stage schemes that give optimal damping of high-frequencies for a given spatial-differencing operator. The objective of the method is to design schemes that combine well with multi-grid acceleration. The schemes are tested on a nonlinear scalar equation, and compared to Runge-Kutta schemes with the maximum stable time-step. The optimally smoothing schemes perform better than the Runge-Kutta schemes, even on a single grid. The analysis is extended to the Euler equations in one space-dimension by use of 'characteristic time-stepping', which preconditions the equations, removing stiffness due to variations among characteristic speeds. Convergence rates independent of the number of cells in the finest grid are achieved for transonic flow with and without a shock. Characteristic time-stepping is shown to be preferable to local time-stepping, although use of the optimally damping schemes appears to enhance the performance of local time-stepping. The extension of the analysis to the two-dimensional Euler equations is hampered by the lack of a model for characteristic time-stepping in two dimensions. Some results for local time-stepping are presented.
Document ID
19890054409
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Van Leer, Bram
(Michigan Univ. Ann Arbor, MI, United States)
Tai, Chang-Hsien
(Michigan Univ. Ann Arbor, MI, United States)
Powell, Kenneth G.
(Michigan, University Ann Arbor, United States)
Date Acquired
August 14, 2013
Publication Date
January 1, 1989
Subject Category
Aerodynamics
Report/Patent Number
AIAA PAPER 89-1933
Meeting Information
Meeting: AIAA Computational Fluid Dynamics Conference
Location: Buffalo, NY
Country: United States
Start Date: June 13, 1989
End Date: June 15, 1989
Accession Number
89A41780
Funding Number(s)
CONTRACT_GRANT: NAG1-869
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available